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Abstract 

Background: The outbreak of the COVID-19 pandemic caused by the SARS-CoV-2 has triggered 

intense scientific research into the possible therapeutic strategies that can combat the ravaging dis-

ease. One of such strategies is the inhibition of an important enzyme that affects an important physi-

ological process of the virus. The enzyme, Guanine-N7 Methyltransferase is responsible for the cap-

ping of the SARS-CoV-2 mRNA to conceal it from the host’s cellular defense. The aim of the study: 

This study aims at computationally identifying the potential natural inhibitors of the SARS-CoV-2 

Guanine-N7 methyltransferase binding at the active site (Pocket 41). Materials and methods: A 

library of small molecules was obtained from edible African plants and was molecularly docked 

against the SARS-CoV-2 Guanine-N7 methyltransferase (QHD43415_13. pdb) using the Pyrx soft-

ware. Sinefungin, an approved antiviral drug had a binding score of -7.6 kcal/ mol with the target was 

chosen as a standard. Using the molecular descriptors of the compounds, virtual screening for oral 

availability was performed using the Pubchem and SWISSADME web tools. The online servers 

pkCSM and Molinspiration were used for further screening for the pharmacokinetic properties and 

bioactivity respectively. The molecular dynamic simulation and analyses of the Apo and Holo pro-

teins were performed using the GROMACS software on the Galaxy webserver. Results: With a total 

RMSD of 77.78, average RMSD of 3.704, total regional (active site) RMSF of 30.61, average regional 

RMSF of 1.91, gyration of 6.9986, and B factor of 696.14, Crinamidine showed the greatest distortion 

of the target. Conclusion: All the lead compounds performed better than the standard while Crin-

amidine is predicted to show the greatest inhibitory activity. Further tests are required to further in-

vestigate the inhibitory activities of the lead compounds. 
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Introduction. Coronavirus disease 

2019 (COVID-19) is a novel infection that 

began in China resulting in a worldwide out-

break. The disease was declared a global 

health emergency and later recognized as a 

pandemic by the World Health Organization 

in March 2020 [1]. As of the 25th of July, 

2020, the global number of reported cases of 

the disease stood at 15,975,268 with 643,476 

deaths and 9,766,873 recoveries [2]. 

COVID-19 is caused by Severe Acute Res-

piratory Syndrome Coronavirus 2 (SARS-

CoV-2) which causes mild to severe respira-

tory illness with symptoms such as fever, 

cough, and shortness of breath. The ailment 

becomes life-threatening in the presence of 

co-morbidities such as diabetes, hyperten-

sion, and cardiovascular diseases [3,4]. 

There is currently no WHO-approved drug 

or vaccine for the cure or prevention of 

COVID-19. SARS-CoV-2 belongs to a large 

family of viruses consisting of multiple 

strains that are known to cause illnesses 

ranging from the common cold to more se-

vere diseases such as the Middle East Res-

piratory Syndrome (MERS) and Severe 

Acute Respiratory Syndrome (SARS) [4,5]. 

SARS-CoV-2 is a positive-sense, single-

stranded RNA virus possessing the largest 

and most complex genome (about 30 Kb), 

packed inside a nucleocapsid protein and en-

veloped with several structural proteins [6]. 

The size of the viral particle is in the range 

of 8 0-90nm and there are bulbous surface 

projections that form crown-like patterns 

(corona) on the surface of the particles [7]. 

The potential therapeutic strategies for the 

treatment of COVID-19 include immuno-

modulation and viral inhibition. Several en-

zymes or structural proteins of SARS-CoV-

2 are potential drug targets as they directly 

affect physiological processes such as RNA 

synthesis, replication, assembly, and human 

cell receptor binding [8,9]. Guanine N-7-

MethylTransferase (GNMT) is one of such 

targets and it is the enzyme responsible for 

the capping of SARS-CoV-2 mRNA. For 

many life-sustaining processes such as repli-

cation, protein translation, and metabolism, 

viruses require a host cell as they lack the 

proper cellular machinery. Viral propagation 

within the host cell requires the transcription 

of viral mRNA. To do this, the viral mRNA 

assumes molecular anonymity to evade de-

tection in the host cell cytoplasm. The viral 

mRNA undergoes structural modification by 

a 5’ cap structure. By evading the host cell 

defense system, viral mRNA can be effec-

tively translated into proteins. The addition 

of the guanine N-7-methylguanosine cap is 

necessary for the maturation, stability, nu-

clear export, and efficient translation of viral 

mRNA. Eukaryotic mRNA is modified by 

the addition of the 5′ cap structure which is 

a 7-methylguanosine linked to the first tran-

scribed nucleotide by a 5′-5′ triphosphate 

bridge [10]. The mRNA cap is formed on the 

first transcribed nucleotide of transcripts by 

three sequential enzymatic activities; tri-

phosphatase, guanylyltransferase, and me-

thyltransferase [11,12]. The 5′ triphosphate 

of pre-mRNA is hydrolyzed to diphosphate 

by a 5′-triphosphatase, to which Guanosine 

monophosphate (GMP) is added by the RNA 

guanylyltransferase to create the cap inter-

mediate, GpppN. Guanine-N-7-methyl 

transferase (GNMT) also known as mRNA 

cap guanine-N7 methyltransferase is the en-

zyme that catalyzes the chemical reaction 

and most importantly plays a necessary part 

in the RNA capping reaction. RNA guanine 

N7 methyltransferase creates the mature cap, 

m7GpppN, and a byproduct, AdoHcy (S-

adenosyl homocysteine) through the methyl-

ation of the cap intermediate utilizing the 

methyl donor, AdoMet [13]. The GNMT in 

coronaviruses belongs to a large class of 

SAM (S-Adenosyl methionine)-dependent 

methyltransferases and is an exoribonucle-

ase [14]. Additionally, they are linked with a 

unique 3’ to 5’ exoribonuclease (ExoN) do-

main in non-structural protein 14 (nsp14). 

The diversity of the capping apparatus 

makes viral RNA capping an attractive tar-

get for drug design and development 

[14,15]. Accordingly, the inhibition of 

GNMT which may induce potent antiviral 

activity makes it an important drug target 

[16]. This implies that incompletely-capped 
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mRNAs can be recognized by immune sen-

sors which trigger innate immunity path-

ways that culminate in the expression of type 

I interferon and other cytokines that have an-

tiviral activity in neighboring cells [17,18]. 

The active site of GNMT is found in Pocket 

41 and it includes residues ARG 289, VAL 

290, TRP 292, GLY 333, PRO 335, ASP 

352, ALA 353, GLN 354, PRO 355, CYS 

356, SER 357, TRP 385, ASN 386, CYS 

387, ASN 388 and PHE 426 [19].  

In the light of the absence of a univer-

sally accepted drug for the treatment of 

COVID-19 and the severity of the pandemic, 

the aim of this study is to therefore identify 

potential natural inhibitors of SARS CoV-2 

GNMT. 

Materials and Methods 

Preparation, analysis, and validation of 

target protein structure: The 3D structure of 

SARS-CoV-2 GNMT in the Protein Data Bank 

(pdb) format (ID: QHD43415_13. pdb) was 

obtained from the I-TASSER online server 

with an estimated Template Modelling (TM) 

score of 0.99 [20]. The web server, Volume, 

Area, Dihedral Angle Reporter (VADAR 1.8) 

was used to reveal the architecture of GNMT. 

The structure of the target was further analysed 

using the Ramanchandran plot obtained from 

the MolProbity web server [21].  

Ligand preparation: A library of 1,048 

compounds obtained from edible African 

plants such as fruits, spices, and vegetables 

were downloaded from PubChem database 

[22]. All the compounds had been pre-screened 

for Lipinski (hydrogen bond donor (HBD) ≤ 5, 

hydrogen bond acceptor (HBA) ≤ 10, molecu-

lar weight ≤ 500, and logP ≤ 5) and Veber (po-

lar surface area (PSA) ≤ 140, and rotatable 

bonds ≤ 10) rules [23]. The 3D structures of all 

the compounds and that of the standard, Sine-

fungin (PubChem CID 65482) were down-

loaded from PubChem in the structure-data file 

(sdf) format [22].  

Molecular docking and virtual screen-

ing: In preparation for molecular docking, all 

the ligands were uploaded on the virtual 

screening software, PyRx (Python prescrip-

tion) 0.8 version using the Open Babel plug-in 

tool [24] and converted from sdf to Protein 

Data Bank, Partial Charge, & Atom Type 

(pdbqt) format [25]. For stable conformation, 

the Universal Force Field (UFF) was used as 

the energy minimization parameter and conju-

gate gradient descent as the optimization algo-

rithm. Using the AutoDock Vina plug-in tool 

in Pyrx, all ligands and the standard were 

docked against the target protein, SARS-CoV-

2 GNMT using the following grid parameters 

[26]. Centre X = 92.432, Y = 92.529, Z = 

92.555 and Dimensions (Angstrom): X = 

87.658, Y = 97.427, Z = 64.081 [24]. Using the 

Microsoft Excel software, the docked results 

were exported in comma-separated values 

(.csv) format and screened using the docking 

score of the standard, Sinefungin (-7.6 kcal/ 

mol) as the cut-off. The SWISSADME, 

pkCSM, and Molinspiration web-servers were 

used to predict the molar refractivity, pharma-

cokinetic properties, and bioactivity of all the 

ligands respectively [27-30]. The SMILES for 

Sinefungin and the ligands were downloaded 

from PubChem. Binding site analyses: Using 

the Pymol software, the target protein was su-

perimposed with the docked poses of all the 

front-runner compounds [31]. The Protein-

Ligand Interaction Profiler (PLIP) webserver 

was used to evaluate the resultant protein-lig-

and complexes for hydrogen bonds, salt 

bridges, and other protein-ligand interactions. 

The analyses carried out include the name and 

number of residues, exhaustiveness, bond dis-

tance, and bond angle [32]. The binding pock-

ets of the target protein were analysed with the 

Fpocket web server [19].  

Molecular Dynamic Simulations 

(MDS) and Analyses: A 2-nanoseconds MDS 

of the Apo and Holo structures of SARS-CoV-

2 GNMT was performed using the 

GROMACS software of the Galaxy (versions 

2019.1 and 2019.1.4) supercomputing server 

[33]. For ligand parameterization, LigParGen 

server was used to generate GROMACS-com-

patible topology files for the small molecules. 

OPLS-AA/ 1.14*CM1A was the force field pa-

rameter used [34, 35]. After initial conversion 

to topology files, solvation, energy minimiza-

tion, and equilibration (NVT and NPT), a 

1,000,000-step MDS was performed. The anal-

yses of trajectories were done using the BIO 
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3D tool on the Galaxy super-computing plat-

form [36]. These include the Principal Compo-

nent Analysis (PCA), per residue Root Mean 

Square Fluctuation (RMSF) of the protein 

backbone, and Root Mean Square Deviation of 

atomic positions (RMSD) and Dynamical 

Cross-Correlation Matrix (DCCM). [37]. The 

radius of gyration and the B factor was also an-

alysed using the MDWeb web server [38].  

Results and Discussion 

Structural analysis, validation, and 

preparation of SARS-CoV-2 GNMT 

(QHD43415_13. pdb): The Apo structure of 

SARS-CoV-2 GNMT (QHD43415_13. pdb) 

has 527 amino acids with the following  

constituent secondary structures: α helix 21%; 

beta-sheets 30%; Coil 48%; and Turns 16% 

(Fig. 1). The Total Accessible Solvent Area 

(ASA) is 260780 (Å) ². The geometry of 

SARS-CoV-2 GNMT (QHD43415_13. pdb) 

reveals 8.01% poor rotamers, 83.98% favored 

rotamers, 4.00% Ramachandran outliers, 

82.29% Ramachandran favored, 3.22% Car-

bon Beta deviations >0.25Å, 0.00% bad bonds 

and 1.04% bad angles (Fig. 2). The Peptide 

omegas of SARS-CoV-2 GNMT 

(QHD43415_13. pdb) include 0.00% Cis Pro-

lines and 3.04% Twisted Peptides. The low-

resolution criteria include 8.2% CaBLAM out-

liers and 0.96% CA Geometry outliers. 

 
a 

 
b 

Fig. 1. a: Cartoon model of the crystal structure of SARS-CoV-2 GNMT (QHD43415_13.pdb). 

Beta-sheets (yellow), Alpha helix (red), and Loops (green) b: Surface representation. 
 

 
Fig. 2. Ramachandran plotfor SARS-CoV-2 GNMT (QHD43415_13.pdb) 

 

Chemoinformatic profile of ligands 

(Fig. 3, Table 1): A combination of Ghose, 

Lipinski, and Veber rules define the molec-

ular descriptors necessary for good oral  

bioavailability of drugs and their penetration 

through biological membranes. The molecular de-

scriptors include a molecular weight ≤ 500 g/mol, 

log P ≤ 5, hydrogen bond donors ≤ 5, hydrogen 

bond acceptors ≤ 10, molar refractivity between 

40 to 130, the number of rotatable bonds ≤ 10 and 

polar surface area (PSA) ≤ 140 [39-42]. 
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a 

 
b 

 
c 

 
d 

Fig. 3. The 3D chemical structures (stick model) of standard and lead compound. 

a: Sinefungin; b: Crinamidine; c: Marmesin; d: Sinensetin 
 

Table 1 

Chemo-informatic properties of standard and lead compounds 
 Sinefungin 

(Standard) 
Crinamidine Marmesin Sinensetin 

Molecular Weight (g/mol) 381.39 346.37 354.31 320.29 

XLogP3 -4.31 -0.43 -1.05 0.33 

Hydrogen Bond Donors 6 3 4 5 

Hydrogen bond acceptors 10 6 9 7 

# heavy atoms 27 25 25 23 

# rotatable bonds 7 2 4 2 

TPSA (Aa) 208.65 111.90 138.82 119.61 

Molar Refractivity 92.73 88.47 83.12 80.83 

Saturation (fraction csp3) 0.60 0.63 0.44 0.25 

PAIN Alert 0 0 0 0 

GCPR ligand 1.15 0.22 -0.16 0.37 

Ion channel modulator 0.66 0.02 -0.26 0.07 

Kinase Inhibitor 0.74 -0.62 -0.26 0.11 

Nuclear Receptor Ligand -1.03 0.67 -0.14 0.48 

Protease Inhibitor 0.57 0.14 -0.16 0.23 

Enzyme Inhibitor 1.14 0.36 0.29 0.39 

 

Results from Table 1, reveal that none 

of the lead compounds violated the Ghose, 

Lipinski, and Veber rules. This suggests that 

they have good oral bioavailability and per-

meability. Therefore, we predict that these 

compounds are good drug candidates having 

met the criteria for drug-likeness assessment 

[43]. However, the Standard (Sinefungin) vi-

olates the Veber rule with a high TPSA value 

(208.65Aa). This suggests that it would have 

a considerably lower intestinal absorption, 

blood-brain barrier permeation, and cellular 

potency than the lead compounds [44].  

The molecular complexity of a com-

pound is measured by the ratio of sp3 hybrid-

ized carbons over the total carbon count of 

the molecule (Fraction Csp3). It is an im-

portant property in determining the success 

of drug development. A value of at least 0.25 

indicates saturation [45]. From (Table 1), all 

lead compounds and the standard are satu-

rated suggesting molecular stability. Crin-

amidine has a higher saturation than the 

standard while Sinensetin has the lowest. 

Due to problematic structural moieties, 

promiscuous bioactive compounds interact 

with multiple biological targets and aggregate 

under assay conditions giving false-positive re-

sults. While this might be good for polyphar-

macology, unintended interactions might 

likely lead to many undesired side effects [46]. 

From (Table 1) all lead compounds and the 

standard are predicted to be non-promiscuous. 

Beyond ligand binding to the appropriate 

target, it should elicit a pharmacological effect. 

Drug candidates are classified based on their 

bioactivity which includes GPCR ligands, ion 

channel modulators, kinase inhibitors, nu-

clear receptor ligands, protease inhibitors, 

and other enzyme inhibitors [47]. In this 
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study, the results showed that only the stand-

ard and Crinamidine had poor bioactivity 

scores as Nuclear Receptor Ligand and Ki-

nase inhibitors respectively. All other scores 

for standard and lead compounds revealed 

moderate to good bioactivity against the tar-

gets. Furthermore, all lead compounds 

showed good activity as enzyme inhibitors. 

While the standard showed the highest en-

zyme inhibition, Marmesin showed the least 

activity (Table 1) [29, 48].  

Pharmacokinetic properties of ligands: 

Pharmacokinetic properties play an im-

portant role in drug discovery and develop-

ment. The primary goal of drug discovery or 

design projects is to identify potential drug 

candidates that have the greatest efficacy and 

least toxicity. To avoid failures in the drug de-

velopment process, it is proper to identify good 

Absorption, Distribution, Metabolism, Excre-

tion, and Toxicity (ADMET) properties of the 

front-runner compounds through in sili-

comethods [28]. An excellent drug candidate 

should have good ADMET properties at 

therapeutic doses [28, 49].  

The penetration of a target molecule by a 

drug candidate is a good marker of its thera-

peutic potential and is influenced by absorp-

tion parameters such as human intestinal ab-

sorption (poor: <30%), caco2 permeability 

(high:> 0.9), water solubility (insoluble: less 

than -4.0 Log mol/L), and skin permeability 

(low: LogKp> −2.5). From Table 2, data sug-

gests that the standard and all lead compounds 

have good human intestinal absorption prop-

erty, and skin permeability. The ability to pen-

etrate human epithelial colorectal adenocarci-

noma cells is lowest in the standard, and high-

est in Crinamidine.  

The pharmacological markers for distri-

bution include CNS permeability (permeable 

Log PS > -2; poor Log PS < -3), BBB permea-

bility (permeable: Log BBB > 0.3; poor <: Log 

BBB <-1), Volume of distribution steady state 

(Low: Log VDss<- 0.15; High: Log VDss> 

0.45), and Fraction unbound. From Table 2, 

Sinensetin has a high VDSS, while the values 

for Marmesin and Crinamidine are below the 

pharmacological range. This can be corrected 

by dosage. 

The standard and Marmesin have a poor 
ability to permeate into the brain tissue, while 
other lead compounds can permeate. The 
standard and all the lead compounds have poor 
CNS permeability. The fraction unbound val-
ues for standard and all lead compounds are 
within an acceptable range. 

P-glycoprotein is a transmembrane ef-
flux pump that pumps its substrates from in-
side to outside the cell [50]. All the lead 
compounds except Marmesin were shown to 
be P-glycoprotein substrates which imply 
that they should be co-administered with a 
P-glycoprotein inhibitor to prevent a poten-
tial reduction in absorption and oral bioa-
vailability resulting in decreased retention 
time of the drug [51]. However, all lead 
compounds, and the standard showed no in-
hibition to P-glycoprotein I and II indicating 
less likelihood of its substrates inducing cel-
lular toxicity, and drug interactions [52, 53].  

The predicted metabolic behavior of 
bioactive compounds is a determinant of 
their inclusion or elimination in the drug dis-
covery process. The inhibition or non-inhi-
bition of the isomers of the Cytochrome 
P450 enzyme determines whether the drug 
candidates would undergo biotransformation 
or accumulate in the cellular spaces with 
toxic tendencies. If drug candidates are Cy-
tochrome P450 enzyme substrates they 
would be administered with inhibitors to fa-
cilitate their metabolism [54]. From Table 2, 
all lead compounds are neither inhibitors nor 
substrates of CYP1A2, CYP2C19, CYP2C9, 
CYP2D6, and CYP3A4 enzymes.  

The predicted excretion values for Total 
Clearance for the standard, and the lead com-
pounds are within the pharmacological range 
[23]. Similarly, they all are predicted to be 
non-substrates of Renal Organic Cation Trans-
porter 2 (OCT2). This implies that they will all 
be eliminated from the blood into the proximal 
tubular cell by the Renal OCT2 [24]. 

The toxicity profile for the standard and 
all lead compounds suggests that are non-mu-
tagenic, non- cardiotoxic, non-hepatotoxic, 
and non-dermatotoxic as revealed in their 
AMES toxicity, hERG I & II toxicity, hepa-
totoxicity, and skin Sensitization predictions 
respectively [28]. 
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The dose administered at clinical trials is 

determined by the maximum recommended tol-

erated dose. Values less than 0.477 log 

mg/kg/day are considered low while values 

higher than 0.477 log mg/kg/day are considered 

as high. From Table 2 the predicted values sug-

gest that Marmesinand Crinamidine are the most 

and least potent compounds respectively [55]. 

The predicted values for Oral Rat Acute Toxicity 

and Oral Rat Chronic Toxicity should be consid-

ered alongside factors such as concentration of 

drug, dose, and the length of time it is adminis-

tered [55]. In this study, the data on theoral rat 

acute and chronic toxicity were obtained from 

the pkCSMonline server. 

Inhibition of 50% of the growth of  

T. pyriformis, a protozoan bacterium (IGC50) 

is a toxicity marker in drug discovery. When 

the pIGC50 value is greater than -0.5 log Ug/L, 

the drug candidate is considered toxic. Results 

from Table 2, all lead compounds, and the 

standard are predicted to be toxic against  

T. pyriformis suggesting antibacterial effect 

properties (that might be unharmful to human 

cells) [55]. Similarly, in flathead Minnows, the 

log LC50 is the log of a compound that causes 

the death of 50% of the population. High acute 

toxicity is indicated by values less than 0.3 log 

mM. The results from Table 2 shows that all 

lead compounds and the standard are not toxic 

to Minnows [55]. 

Table 2 

Pharmacokinetic properties of ligands 
 Sinefungin 

(standard) 
Crinamidine Marmesin Sinensetin 

Water solubility (log mol/L) -2.892 -2.487 -2.21 -3.085 

Caco2 permeability (log Papp in 10-6 

cm/s) 
-0.933 0.54 0.377 -0.119 

Human Intestinal absorption (% 

Absorbed) 
32.936 51.799 48.119 60.725 

Skin Permeability (log Kp) -2.735 -2.735 -2.822 -2.735 

P-glycoprotein substrate (Yes/No) Yes Yes No Yes 

P-glycoprotein I inhibitor (Yes/No) No No No No 

P-glycoprotein II inhibitor (Yes/No) No No No No 

VDss (human) (log L/kg) 0.012 -1.386 -0.611 1.635 

Fraction unbound (human) (Fu) 0.383 0.488 0.397 0.263 

BBB permeability (log BB) -1.582 -0.665 -1.286 -0.927 

CNS permeability (log PS) -3.928 -3.101 -3.954 -3.265 

CYP2D6 substrate (Yes/No) No No No No 

CYP3A4 substrate (Yes/No) No No No No 

CYP1A2 inhibitor (Yes/No) No No No No 

CYP2C19 inhibitor (Yes/No) No No No No 

CYP2C9 inhibitor (Yes/No) No No No No 

CYP2D6 inhibitor (Yes/No) No No No No 

CYP3A4 inhibitor (Yes/No) No No No No 

Total Clearance (log ml/min/kg) 0.564 0.744 0.716 0.347 

Renal OCT2 substrate (Yes/No) No No No No 

AMES toxicity (Yes/No) No No No No 

Max. Tolerated dose (human) (log 

mg/kg/day) 
0.44 0.777 0.393 0.368 

hERG I inhibitor (Yes/No) No No No No 

hERG II inhibitor (Yes/No) No No No No 

Oral Rat Acute Toxicity (LD50)(mol/kg) 2.482 1.996 2.391 2.289 

Oral Rat Chronic Toxicity (log 

mg/kg_bw/day) 
3.081 2.278 3.756 2.929 

Hepatotoxicity (Yes/No) No No No No 

Skin Sensitization (Yes/No) No No No No 

T. Pyriformis toxicity (log ug/L) 0.285 0.285 0.286 0.296 

Minnow toxicity (log mM) 4.001 3.177 4.198 3.747 
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Molecular docking analyses of ligands 

against SARS-CoV-2 GNMT: In molecular 

docking, the binding affinity score is a meas-

ure of the ability of the small molecule to find 

the optimal conformation in the protein bind-

ing pocket. Hence, the ligand with the lower 

binding energy suggests the greatest binding 

affinity making it a possible drug candidate 

[56]. 

All lead compounds have shown greater 

potency as drug candidates because they all 

have a stronger binding affinity than the stand-

ard. Crinamidine has the strongest binding af-

finity of -8.5 Kcal/mol (Table 3). 

Table 3 

Molecular docking scores of ligands against SARS-CoV-2 GNMT 
Ligand Binding affinity (Kcal/mol)  

Sinefungin -7.6 

Crinamidine -8.5 

Marmesin 

Sinensetin 

-7.9 

-7.7 

 
Binding Site analyses: Hydrogen 

bonding plays an important role in many bio-
chemical processes such as protein-ligand in-
teractions. By displacing water molecules, it 
enhances ligand binding [57]. Also, the orien-
tation and length of an intermolecular hydro-
gen bond determine the direction and specific-
ity of ligand binding [58]. 

Hydrogen bonds (H-bonds) are abun-
dant in nature and are vital in protein folding, 
protein-ligand interactions as well as catalytic 

reactions. In biological systems, they are gen-
erally considered facilitators of protein-ligand 
binding [59, 60]. An increasing number of H-
bonds between protein and drug molecule in 
molecular simulations is indicative of a 
stronger binding affinity [61].  

Figures 4 & 5 and Table 4 reveal that 
while the standard has the highest number of 
intermolecular hydrogen bonds (eight) while 
Marmesin forms the least (one).  Of all the lead 
compounds, Crinamidine has the highest num-
ber of hydrogen bonds (four).  

 

 
a 

 
b 

 
c 

 
D 

Fig. 4. Binding site of SARS-CoV-2 GNMT interacting with standard and lead compounds;  

a: GNMT-Sinefungin complex; b: GNMT-Crinamidine complex;  

c: GNMT-Marmesin complex; d: GNMT-Sinensetin complex 

 
a 

 
b 

 
c 

 
d  

 

Fig. 5. Protein-Ligand interactions of SARS-CoV-2 GNMT with standard and lead compound.  

a: GNMT-Sinefungin complex; b: GNMT-Crinamidine complex; c: GNMT-Marmesin complex; 

d: GNMT-Sinensetin complex 
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Table 4 

Hydrogen bond analysis 

Complex 
Number of 

bonds 
Residues Distance (H-A) Distance (D-A) Bond angle 

GNMT-Sinefungin 8 VAL290 2.65 3.19 114.05 

  VAL290 2.05 2.9 145.62 

  GLY333 2.3 3.02 124.56 

  ASP352 1.96 2.87 151.24 

  ALA353 2.08 3.02 155.19 

  ALA353 2.99 3.92 157.5 

  GLN354 2.4 2.96 114.36 

  HIS427 3.18 3.86 125.1 

GNMT-Crinamidine 4 VAL290 3.34 4.04 129.2 

  ASP352 2.13 3.09 159.62 

  ALA353 3.38 3.95 118.21 

  ASN388 2.17 3.16 167.33 

GNMT-Marmesin 2 GLN354 3.46 3.78 101.13 

  HIS424 2.67 3.36 126.18 

GNMT-Sinensetin 1 ALA353 3.07 3.64 117.17 

 

 

All hydrogen bonds of the lead com-

pounds and standard fall within Pocket 41. 

Regarding the angles formed by hydrogen 

bonds, the standard forms four strong 

(greater than 130°) and four (less than 130°) 

hydrogen bonds with the target protein. Crin-

amidine forms two weak and two strong hy-

drogen bonds. Other lead compounds form 

only weak hydrogen bonds [62].  

Regarding the donor to acceptor dis-

tance, the standard formssix moderate  

(2.5-3.2 Å) and two weak (3.2-4.0 Å) hydro-

gen bonds with the target protein. Crin-

amidine forms two moderate and two weak 

hydrogen bonds. Marmesin and Sinensetin 

form only weak bonds [62]. 

The identification of potential protein-

ligand interactions is an integral aspect of 

drug discovery as it aids the discovery of 

possible new drug leads, thus contributing to 

the advancement from hits to leads and pre-

diction of likely explanations for side effects 

of approved drug candidates [63]. The most 

frequently observed interactions in ligand 

design are hydrophobic bonds, hydrogen 

bonds, and π-stacking, followed by weak hy-

drogen bonds, salt bridges, amide stacking, 

and cation–π interactions [64]. The presence 

of hydrophobic interactions and salt bridges 

further strengthens and stabilizes the protein-

ligand complexes [65].  

The salt bridge is the strongest non-cova-

lent bond, and it gives greater stability to the 

Protein-ligand complex [66]. From Table 5, 

GNMT-Crinamidine and GNMT-Marmesin 

complexes form salt bridges at residues 

ASP352 and HIS424 respectively. GNMT-

Marmesin also has the highest number of hy-

drophobic interactions. This suggests a 

slightly more atom-efficient binding than 

other complexes. GNMT-Crinamidine has 

also p-stacking contributing to the small mol-

ecule interaction. 
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Table 5 

Other Protein-ligand interactions 
 

 Hydrophobic Int. Salt bridge p-Stacking 

Complex Residue Distance Residue Distance Residue Distance 

GNMT-Sinefungin VAL290 3.85     

 PRO335 3.72     
       

GNMT-Crinamidine VAL290 3.82 ASP352 5.28 PHE426 4.78 

 PRO335 3.8     

 PHE426 3.74     
       

GNMT-Marmesin VAL290 3.79 HIS424 4.1   

 VAL290 3.85     

 PRO335 3.8     

 PHE426 3.61     

 PHE426 3.49     
       

GNMT-Sinensetin VAL290 3.9     

 ALA353 3.87     

 PHE426 3.68     

 PHE426 3.72     

 

Analysis of MDS 

Root Mean Square Deviation of 

Atomic Positions (RMSD): Through a com-

putational approach, the RMSD is used to as-

sess the quality of a reproduced binding pose. 

The new structures induced by simulation 

and/or ligand binding are compared to a ref-

erence structure where the RMSD is at zero. 

The structural distance between the Cα atoms 

of the protein backbone is used as a means of 

evaluation. Lower RMSD values show 

greater stability of the biological configura-

tion. Higher values suggest greater structural 

instability [56, 67, 68]. Fig. 6 is s screenshot 

showing the conformational changes the Apo 

and Holo structures underwent after the 

MDS. 

 
a 

 
b 

 
c 

 
d 

 
e 

 

Fig. 6. Cartoon model of the crystal structure of SARS-CoV-2 GNMT Apo and Holo-structures 

(without water and ions) after molecular dynamics simulation. Beta-sheets (yellow),  

Alpha helix (red) and Loops (green). a: GNMT; b: GNMT-Sinefungin complex;  

c: GNMT-Crinamidine complex; d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 
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In a 2-nanosecond trajectory, the RMSD 

of Apo and Holo-structures were measured over 

consistent time frames (Fig. 7 and Table 6). Of 

all the Holo-structures, the GNMT-Sinefungin 

complex has the least total and average RMSD 

values. The other lead compounds produced 

greater total and average RMSD values than 

the standard (Sinefungin). Crinamidine fol-

lowed closely by Sinensetin induced the great-

est total and average RMSD values. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

 

 

Fig. 7.  RMSD for Apo and Holo-structures. a: GNMT; b: GNMT-Sinefungin complex; c: GNMT-

Crinamidine complex; d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 

 

There is a steep increase in RMSD of the 

simulated Apo protein relative to the crystal struc-

ture as the production time increased. The slope 

suggests that the RMSD values would increase 

with more simulation time. Similarly, the Holo-

structures formed by the Crinamidine and 

Sinensetin also showed a steep increase of RMSD 

values all through the trajectory showing instabil-

ity. This is also shown in the time frame in which 

their respective highest RMSD values were at-

tained (20 and 19 respectively). The GNMT-

Marmesin complex shows a gentle slope that flat-

tens towards the end of the trajectory. The 

GNMT-Sinefungin complex shows the greatest 

stability with the least gradient of the slope.  

The distribution of RMSD values of the Apo 

and Holo-structures (Fig. 8 and Table 6) sug-

gests that the greatest deviation to the right 

from the respective reference structures comes 

from the GNMT-Crinimadine complex. A total 

of 17 peaks were found between RMSD values 

3.0 to 5.0 Å for the GNMT-Crinimadine com-

plex while 17, 17, and 16 peaks were found in 

the same positions for the GNMT-Sinefungin, 

GNMT-Sinensetin, and GNMT-Marmesin 

complexes respectively. The GNMT-Crini-

madine complex shows a wider RMSD range 

than the GNMT-Sinefungin and GNMT-

Sinensetin complexes. This is because the 

GNMT-Crinimadine complex has a peak be-

tween the 5.00 -5.49 Å range while the 

GNMT-Sinefungin complex has no peak be-

yond 4.0 Å and GNMT-Sinensetin complex 

has no peak beyond 5.0 Å. 
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Beginning of Table 6 

Summary of data from Molecular Dynamics Simulations of Apo and Holo structures 

 of SARS-CoV-2 GNMT 

MDS Parameters GNMT 
GNMT-

Sinefungin 

GNMT-

Crinamidine 

GNMT-

Marmesin 

GNMT-

Sinensetin 

RMSD      

Total RMSD 67.269 65.504 77.78 66.383 77.69 

Average RMSD 3.203 3.119 3.704 3.16 3.67 

Lowest RMSD 0 0 0 0 0 

Highest RMSD 3.998 3.721 5.046 4.108 4.895 

Time Frame of Highest RMSD 17 16 20 17 19 

Time Frame of Lowest RMSD 1 1 1 1 1 

      

RMSD Peak Distribution      

0.00 – 0.49A 1 1 1 1 1 

0.50 – 0.99A 0 0 0 0 0 

1.00 – 1.49A 0 0 0 0 0 

1.50 – 1.99A 0 0 0 0 0 

2.00 – 2.49A 2 1 2 2 1 

2.50 – 2.99A 3 2 1 2 2 

3.00 – 3.49A 6 13 5 10 2 

3.50 – 3.99 9 4 1 5 5 

4.00 – 4.49 0 0 3 1 5 

4.50 – 4.99 0 0 7 0 5 

5.00 -5.49  0 0 1 0 0 

      

RMSF      

Total Global RMSF 861.45 708.39 1100.42 864.69 946.28 

Average Global RMSF 1.63 1.34 2.09 1.64 1.8 

Total Regional (Pocket 41) 

RMSF 
20.98 18.46 30.61 19.9 22.76 

Average Regional (Pocket 41) 

RMSF 
1.31 1.16 1.91 1.24 1.42 

Least Fluctuation 0.65 0.59 0.62 0.7 0.71 

Highest Fluctuation 6.68 6.04 7.1 6.55 6.83 

Range of RMSF 6.03 5.45 6.48 5.85 6.12 

      

PCA      

Total global motions (PC1, PC2 

& PC3) 
19.06382 19.42237 19.36949 19.6954 20.13226 

Average global motions (PC1, 

PC2 & PC3) 
0.03611 0.03685 0.03675 0.03737 0.0382 

Total Regional (Pocket 41) Mo-

tion (PC1, PC2 & PC3) 
0.44046 0.56208 0.55081 0.43385 0.55802 

Average Regional (Pocket 41) 

Motion (PC1, PC2 & PC3) 
0.02892 0.03513 0.03442 0.02712 0.03488 

      

PC1 Eigenvalue 46.19% 28.44% 70.47% 40.24% 54.26% 
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End of Table 6 

Summary of data from Molecular Dynamics Simulations of Apo and Holo structures 

 of SARS-CoV-2 GNMT 

MDS Parameters GNMT 
GNMT-

Sinefungin 

GNMT-

Crinamidine 

GNMT-

Marmesin 

GNMT-

Sinensetin 

PC2 Eigenvalue 16.23% 18.22% 10.06% 24.89% 11.73% 

PC3 Eigenvalue 8.31% 13.31% 3.97% 9.07% 8.23% 

Total 70.73% 59.97% 84.50% 74.20% 74.22% 

PC1 cosine content 0.694 0.725 0.885 0.802 0.726 

PC2 cosine content 0.592 0.003 0.452 0.635 0.553 

PC3 cosine content 0.000 0.021 0.259 0.582 0.273 
      

Radius of Gyration      

Average Gyration 6.9955 6.9929 6.9986 6.99292 6.9951 

Maximim Gyration 7.00071 6.99792 7.00598 6.99873 6.99983 

Minimum Gyration 6.99132 6.98818 6.98944 6.98703 6.98903 

Range of Gyration  0.0094 0.0097 0.01654 0.117 0.0108 

% Gyration 0.13 0.14 0.24 0.17 0.15 

Time Frame of Max. Gyr. 14 21 18 8 5 

Time Frame of Min.Gyr. 1 16 1 1 1 
      

B Factor      

Global Average B Factor 324.51 168.72 513.95 247.71 276.95 

Regional (Pocket 41) Average B 

Factor 
220.53 167.69 696.14 154.53 260.06 

 

a 
 

b 
 

c 

 
d  

e 

 

 

 

 

Fig. 8. RMSD histogram for Apo and Holo-structures. a: GNMT; b: GNMT-Sinefungin complex;  

c: GNMT-Crinamidine complex; d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 
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Put together, during the course of the 

simulation, the ligand-induced protein confor-

mations have changed between different time 

points in the trajectory. The RMSD data sug-

gests that Crinamdine, Marmesin, and 

Sinensetin in this order induced more struc-

tural distortion to GNMT than the standard. 

Crinamdine followed closely by Sinensetin 

showed the greatest ligand-induced instability 

of the viral protein.  

RMSF: The function of a protein is 

largely dependent on its function and dynam-

ics. Protein motions are global, regional (do-

main or active site), and local (residue). Protein 

dynamics can be evaluated through the meas-

ure of the root mean square fluctuations 

(RMSF) of aligned residues. [69]. 

From Figure 9 and Table 6, the total and 

average global RMSF is greater in the GNMT-

Crinamidine complex than all the other Holo-

structures and least in the GNMT-Sinefungin 

complex (Standard). In this regard, the 

GNMT-Crinamidine complex is followed by 

the GNMT-Sinestein complex. The total and 

average regional (pocket 41) RMSF remained 

highest in the GNMT-Crinamidine complex 

followed by the GNMT-Sinestein complex. 

The lowest values are seen in the GNMT-Sine-

fungin complex for Pocket 41. In a similar 

vein, the highest fluctuation and highest range 

of RMSF were found in the GNMT-Crin-

amidinecomplex is followed by the GNMT-

Sinestein complex. GNMT-Sinefungin com-

plex (Standard) had the lowest values. 

Put together, Crinamidine showed the 

most instability with the greatest fluctuations 

at both global and regional sites followed by 

Sinensetin. Globally, Sinefungin showed the 

least fluctuation at the regional (Pocket 41) 

site. 

Radius of Gyration: TheRoG analysis is 

run to indicate or ascertain the compactness of 

the secondary structures within the 3D struc-

ture of the protein. It is measured from the cen-

ter of mass of the molecule with a high RoG 

suggesting loose packing while a low RoG 

suggests a tight packing of the protein [70]. 

 

 
a 

 
b 
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e 

 

 

 

 

Fig. 9.  Per-residue RMSF for Apo and Holo-structures.  

a: GNMT; b: GNMT-Sinefungin complex; c: GNMT-Crinamidine complex;  

d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 
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Fig. 10.  Radius of gyration for Apo and Holo-structures. 

 a: GNMT; b: GNMT-Sinefungin complex; c: GNMT-Crinamidinecomplex;  

d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 

 

 

Graphical representation of the RoG re-

veals that the GNMT-Crinamindine complex 

has a steep slope in the upward direction show-

ing the least compactness. The GNMT-Sine-

fungin complex also progressed upwardly 

howbeit with a gentle slope (Figure 10). The 

GNMT-Marmesin complex shows a gentle 

slope with a downward trend as the trajectory 

progressed. The GNMT-Sinensetin appears to 

be flat with a slight downward trend. 

Trajectory data for RoG reveals that the 

GNMT-Crinamindine complex had the highest 

values of average gyration, range of gyration, 

and percentage gyration over the trajectory. 

This made it the least compact of all the Holo-

structures. The GNMT-Sinefungin complex is 

the most compact and only marginally differ-

ent from the GNMT Marmesin complex. (Ta-

ble 6). Put together, the Crinamdine followed 

closely by Sinensetin induced the greatest con-

formational changes on the target protein as 

shown by the least compactness. This suggests 

that they are better GNMT inhibitors than the 

standard. 

B-Factor: The B-Factor or Temperature 

factor is an evaluation of the thermostability of 

the protein molecule as it measures the internal 

atomic motions as reflected in their flexibility 

or rigidity [71]. The B-factor also directly im-

pacts the residual factor (R factor) which is a 

determinant of the stereochemical quality of 

protein structure coordinates [72].  

From Figure 11 and Table 6, the graph-

ical plots of the B factor values show high val-

ues at the termini of the protein molecules sug-

gesting molecular flexibility at these ends, and 

that the GNMT-Sinefungin complex is the 

most thermally stable of all the Holo-struc-

tures. The global average B-Factor value of the 

GNMT-Crinamidine complex is the highest of 

all the Holo-structures while the GNMT-Sine-

fungin has the lowest value.  
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Fig. 11.  B Factor for Apo and Holo-structures. a: GNMT; b: GNMT-Sinefungin complex; 

 c: GNMT-Crinamidine complex; d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 

 

 

This suggests that at the global level the 

lead compounds-induced conformations are 

more thermally unstable than the conformation 

induced by the standard. In a similar vein, data 

of the regional average B factor obtained from 

Pocket 41 suggests that the GNMT-Crin-

amidinecomplex has the highest values of all 

the Holo-structures and this was followed by 

the GNMT-Sinensetin complex. In only the 

GNMT-Crinamideine complex, the average B-

factor value for the Pocket 41 is higher than 

that of the global average. The GNMT-Marme-

sin complex has the least B factor value at the 

regional level. Put together, the greatest tem-

perature-dependent atomic vibrations were in-

duced by Crinamidine binding causing the 

greatest dynamic disorder of the GNMT stere-

ochemistry. 
Principal components Analysis (PCA): 

New conformations are generated during the 
molecular dynamic simulation of a protein. 
The statistical significance of these confor-
mations is determined by the use of principal 
component analysis (PCA) [73]. Of all the 
Holo-structures, the total global motions 
(mean of PC1, PC2, and PC3) were highest in 
the GNMT-Sinensetincomplexand least in the 
GNMT-Crinamidine complex.  However, the 
total regional motions (mean of PC1, PC2 & 
PC3) were highest in the GNMT-Sinefungin 
complex followed closely by the GNMT-
Sinensetin and GNMT-Crinamidine com-
plexes (Figure 12 and Table 6). 
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Fig. 12. Principal component analysis cluster plot of Apo and Holo-structures. 

The projection of trajectory onto 1st few eigenvectors for: a: GNMT;  

b: GNMT-Sinefungin complex; c: GNMT-Crinamidine complex;  

d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 

 

Specifically, based on the greatest mo-

tions, the best global conformations are PC2 of 

the Apo protein, PC1 of the GNMT-Sinefungin 

complex, PC1 of the GNMT-Crinamidine 

complex, PC1 of the GNMT-Marmesin com-

plex, and PC3 of the GNMT-Sinensetin com-

plex. Of all these Holo structures, the GNMT-

Sinensetin complex has the greatest motion. 

Similarly, the best conformations that pro-

duced the greatest motions at Pocket 41 are 

PC3, PC3, PC3, PC1, and PC2 of the Apo pro-

tein, GNMT-Sinefungin complex, GNMT-

Crinamidine complex, GNMT-Marmesin 

complex, and the GNMT-Sinensetin com-

plexes respectively. Of all these Holo-struc-

tures, the GNMT-Crinamidine complex has 

the greatest motion at the Pocket 41. 

The convergence of the MD simulation 

is revealed by the cosine contents of the prin-

cipal components. Convergence shows sam-

pling quality, accuracy, and reproducibility. 

Table 6 shows the results of the cosine content. 

They show good quality except for a slight 

non-convergence at the PC3 of the GNMT-

Sinefungin complex [74]. 

The dynamic cross-correlation (DCC) 

analysis: This is a standard method for analyz-

ing significant intermolecular contacts that are 

rapidly substituted by side-chain flipping in mo-

lecular dynamic simulations [75]. The dynamic 

cross-correlation map captures the multimodal 

characteristics of atoms, especially at the inter-

face of macromolecules by quantifying the cor-

relation coefficients of motions between atoms 

depicting data as positive and negative correla-

tion effect of amino acids [75, 76].  

From Figure 13, the strongest overall 

anti-correlated motion of residues occurred in 

the GNMT-Crinamidine complex. The active 

site of GNMT fall within the range of residues 

289-426. The GNMT-Sinefungin complex 

showed non-correlated between residues 300-

400 while the other residues in the active site 

showed moderate anti-correlation motions.  
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Fig. 13. Dynamic cross correlation map Apo and Holo-structures of 1m4k Purple represents anti-

correlated, dark cyan represents fully correlated while white and cyan represents moderately 

 and uncorrelated respectively. 1.0= correlated; 0 is non-correlated; and -1.0 is anti-correlated. 

a: GNMT; b: GNMT-Sinefungin complex; c: GNMT-Crinamidine complex;  

d: GNMT-Marmesin complex; e: GNMT-Sinensetin complex 

 

 

 

 

The GNMT-Crinamidine complex 

showed strong anticorrelation motions be-

tween residues 250-450 which covers the 

whole area of the active site. The GNMT-

Marmesin complex shows moderate anticorre-

lated motions at approximate residues 280-

300, predominantly non-correlated motions 

between residues 300-350, and predominantly 

moderate anticorrelated motions from residues 

350-400. The GNMT-Sinensetin complex 

showed non-correlation, moderate correlation, 

and moderate anticorrelation motions between 

residues 250-300. However, the greater portion 

consisting of residues 300-450 show moderate 

anticorrelation motions. 

Put together, the greatest anticorrelation 

motions both globally and regionally (at the ac-

tive site) were found in the GNMT-Crinamidine 

complex suggesting the greatest inhibitory ac-

tivity. The heat map of the GNMT-Sinensetin 

complex also suggests a greater inhibitory ac-

tivity than the standard at the active site. 

The compounds all showed good oral 

bioavailability properties except for the 

Standard which has a high TPSA value. The 

standard, and the lead compounds all 

showed favorable absorption, metabolism, 

excretion, and toxicity properties. The distri-

bution pharmacokinetics are generally fa-

vorable except that all the compounds have 

a poor CNS permeability, poor BBB (except 

standard and Marmesin) and they are P-gly-

coprotein substrates (except Marmesin). The 

standard has the highest number of hydrogen 
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bonds formed within the active site followed 

by Crinamidine. The trajectory data such as 

RMSD, RMSF, B-Factor, DCCM, and RoG, 

suggests that Crinamidine proved to cause 

the greatest distortion to the target protein 

while the standard caused the least at the 

global and regional levels (Pocket 41). Spe-

cifically, of all the compounds, the PC3 of 

Crinamidine is the conformation caused the 

greatest distortion at the active site. 

Isolated for the Streptomyces species, 

Sinefungin is a natural nucleoside that is a 

derivative of S-adenosylmethionine (SAM) 

[77]. It has shown a wide range of biological 

effects which include amoebicidal, antifun-

gal, antibacterial (Streptococcus pneu-

moniae) and antiparasitic (Plasmodium, ma-

larial, trypanosomal, and leishmanial spe-

cies) activities [77, 78,79,80].The antiviral 

activity of Sinefungin has also been estab-

lished as it has been shown to be an inhibitor 

of mRNA(guanine-7-)-methyltransferase, 

mRNA(nucleoside-2'-)-methyltransferase, 

and DNA methyltransferases [81, 82].  Sine-

fungin is has been shown to inhibit the mul-

tiplication of feline herpesvirus type I, New-

castle disease and vaccinia virus [82, 83].   

Crinamidine is an alkaloid obtained 

fromCrinumlatifolium and Talinum triangu-

lare. In Chinese ethnomedicine, the antiviral 

and antitumor properties of the extract of 

Crinum latifolium have been reported [84, 

85]. Sinensetincan be found in orange (Cit-

rus sinensis) peel, and it has a wide range of 

biological activity such as antiviral, anti-

cancer, antitumor, anti-inflammatory. 

Sinensetin is an important ingredient of the 

aqueous extract of Orthosiphon stamineus 

extract which has shown inhibitory proper-

ties against Herpes Simplex Virus type 1 

[86, 87]. Marmesincan be found in mango 

and wheat [88]. Its inhibitory activity against 

the Epstein-Barr virus (EBV) has been re-

ported [89]. 

Conclusion. After the virtual screening 

of a library of 1,048 natural compounds against 

the SARS-CoV-2 GNMT, three lead com-

pounds namely Crinamidine, Sinensetin and 

Marmesin were identified. Overall, the lead 

compounds proved to be better drug candidates 

than the standard in the following order: Crin-

amidine, Sinensetin and Marmesin. 

It is recommended that the inhibitory 

effect of Crinamidine, Sinensetin and 

Marmesin on the active site of SARS-CoV-2 

GNMT should be further investigated.  
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