THE CHOICE OF OPTIMAL PARAMETERS OF THE RESTORATION OF THE AXLE OF THE MILL BASED ON THE METHOD OF ANALYSIS OF HIERARCHIES

1) Belgorod State Technological University n.a. V.G. Shukhov, 46 Kostukova St., Belgorod, 308012, Russia
2) Belgorod State National Research University, 85 Pobedy St., Belgorod, 308015, Russia

e-mail: kds2002@mail.ru, lomakin@bsu.edu.ru, bestuzheva.o@yandex.ru

Abstract
This article presents a range of recovery options axle of the mill based on the method of analysis of hierarchies. Synthesized criteria for optimal solutions and described their relationship to treatment parameters. Built many alternatives to solve multicriterial optimization problems, the proposed methods of processing with varying geometric parameters of the cutting tool and rotational speed. Based on the selected criteria found in the subset of Pareto-optimal recovery options axle. Confirmed method of multi-criteria decision-making method of hierarchy analysis, apply the algorithm to assess and improve the coherence matrix of pairwise comparisons. The proposed method of expert evaluation allows selection of processing parameters, to reduce the complexity of rehabilitation works, at a constant quality of the reconstructed surface of the trunnion of the mill.

Keywords: multicriterial optimization; the restoration of the axle of the mill; the method of analysis of hierarchies.
ВВЕДЕНИЕ

При производстве строительных материалов для измельчения сырья применяют шаровые трубные мельницы, техническое состояние которых при длительной эксплуатации характеризуется значительным износом. Преимущественно механической части опорных вращающихся деталей – цапф. На рабочей поверхности цапф возникают различные дефекты, что под действием динамических нагрузок приводит к потере работоспособности оборудования и способствует длительным простям в ремонте.

Приставной станок позволяет производить обработку цапф помольных мельниц на месте эксплуатации. Для повышения эффективности производства, производительности технологического процесса, стойкости резца, условия возможности охлаждения инструмента, при этом обеспечения высоких показателей точности и качества обработанной поверхности выбран инструмент – ротационный резец. Определяющим параметром режима резания при ротационной обработке является частота вращения цапфы, от которой зависит скорость вращения заготовки, что повышает и на время обработки цапфы и на стойкость инструмента. При этом возможность варьирования геометрических параметров резца: передний угол, углы установки и поворота резца, радиус режущей части резца – позволяет оптимизировать условия стружкообразования для достижения заданных точности и качества цилиндрической поверхности обработки и поддержания высокой работоспособности инструмента.

ОСНОВНАЯ ЧАСТЬ

Задача многокритериальной оптимизации состоит в выборе оптимального решения одновременно по нескольким критериям из множества альтернатив – вариантов сочетаний параметров обработки. Для решения многокритериальной задачи параметрами оценки альтернатив являются следующие критерии: трудоемкость восстановительных работ, время обработки цапфы, износ инструмента, точность геометрических параметров и качество поверхности восстановленной цапфы.

Некоторые параметры и критерии связаны между собой математическими зависимостями, но определить взаимосвязь всех факторов является не выполнимой задачей, ввиду недостаточного количества данных и отсутствия возможности наблюдения результатов в процессе резания. Произведен анализ зависимости критериев от параметров обработки.

При увеличении частоты вращения цапфы во время ремонта, время обработки уменьшается, но стойкость инструмента падает, что приводит к быстрому износу ротационного резца и плохому качеству обработанной поверхности. С другой стороны, уменьшение частоты вращения приведет к повышению трудоемкости восстановительных работ из-за низкой скорости резания.

Увеличение переднего угла, угла установки и угла поворота оси приводит к повышению точности геометрических параметров, но в этом случае страдает качество поверхности восстановленной цапфы. При этом радиус режущей части инструмента положительно влияет на качество восстановленной поверхности при увеличении, но точность обработанной поверхности снижается.

Первоначальным этапом для многокритериальной оптимизации является нахождение некоторого подмножества недоминируемых, то есть Парето-оптимальных альтернатив. Представлено множество способов обработки цапфы, варьируя геометрические параметры ротационного резца и частоту вращения (таблица 1). По средствам экспертной оценки
производится сужение альтернатив с учетом всех критериев. В результате из 25 способов обработки выделено подмножество Парето-оптимальных, которое включает 14 способов.

Характеристики параметров обработки при восстановлении цапфы

<table>
<thead>
<tr>
<th>№ способа</th>
<th>Передний угол, град.</th>
<th>Угол установки оси, град.</th>
<th>Угол поворота резца вокруг оси, град.</th>
<th>Радиус режущей части, мм</th>
<th>Частота вращения, об/мин</th>
<th>Парето-оптимальные варианты (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>1 – 2</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>50 – 70</td>
<td>0 – 10</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>50 – 70</td>
<td>0 – 10</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>10 – 30</td>
<td>10 – 20</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>1 – 2</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>0 – 1</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>30 – 50</td>
<td>0 – 10</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>10 – 30</td>
<td>10 – 20</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>30 – 50</td>
<td>0 – 10</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>2 – 3</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>30 – 50</td>
<td>20 – 30</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>50 – 70</td>
<td>10 – 20</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>30 – 50</td>
<td>20 – 30</td>
<td>1 – 2</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>30 – 50</td>
<td>0 – 10</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>0 – 1</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>10 – 30</td>
<td>0 – 10</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>50 – 70</td>
<td>0 – 10</td>
<td>50 – 70</td>
<td>0 – 10</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>50 – 70</td>
<td>0 – 10</td>
<td>1 – 2</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>50 – 70</td>
<td>10 – 20</td>
<td>30 – 50</td>
<td>10 – 20</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>10 – 30</td>
<td>20 – 30</td>
<td>0 – 1</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>50 – 70</td>
<td>0 – 10</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>2 – 3</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>50 – 70</td>
<td>20 – 30</td>
<td>0 – 1</td>
<td>-</td>
</tr>
</tbody>
</table>

На следующем этапе решения многокритериальной задачи воспользуемся методом анализа иерархий. Методология его заключается в выборе единственной альтернативы, используя суждения эксперта. Результат обработки данных отображает приоритетность сравниваемых способов обработки. Процесс пошагового выбора оптимальных параметров обработки при восстановлении цапфы экспертом произведен в системе поддержки принятия решения – СППР «Решение».

При этом СППР «Решение» вычисляет значения приоритетов, степень заблуждения, индекс согласованности и значение отношения согласованности. По значению приоритета в 18,3 альтернатива «Способ №2» превосходит остальные относительно трудоемкости восстановительных работ.

При этом значение отношения согласованности матрицы парных сравнений равно 5,5%, что не превышает рекомендуемое значение в 10 %. Анализируя представленные данные, можно сделать вывод о согласованности суждений эксперта и корректности результатов сравнения способов.

Аналогично построены матрицы сравнения альтернатив по остальным критериям (рис. 3-6), значения которых имеют высокую степень согласованности и дают непротиворечивую информацию.
Информационные технологии

Fig. 2. Matrix of pair comparisons of treatment parameters in relation to the criterion "The complexity of recovery work"

Fig. 3. Matrix of pairwise comparisons of treatment parameters in relation to the criterion of "Time of process axle"
Рис. 4. Матрица парных сравнений параметров обработки по отношению к критерию «Износ инструмента»

Fig. 4. Matrix of paired comparisons of treatment parameters in relation to the criterion of "Tool wear"

Рис. 5. Матрица парных сравнений параметров обработки по отношению к критерiu «Точность геометрических параметров восстановленной цапфы»

Fig. 5. Matrix of pairwise comparisons of treatment parameters in relation to the criterion "Accuracy of the geometric parameters of the restored axle"
Fig. 6. Matrix of pairwise comparisons of treatment parameters in relation to the criterion "Quality of the restored surface of the axle"

Fig. 7. Matrix of pairwise comparisons of criteria

Результаты исследований
Результатом проведенных оценок альтернатив является расчет рационального способа обработки (рисунок 8). Согласно методу анализа иерархий, оптимальным способом обработки при восстановлении цапф является «Способ № 2», значение приоритета 15,6 %. Параметры обработки характеризуются следующими значениями: передний угол варьируется в пределах 10-30°, угол

Рис. 8. Диаграмма результатов расчетов приоритетов способов обработки при восстановлении цапфы

Fig. 8. Diagram of calculation results of the priorities, methods of processing of restoring the axle

ЗАКЛЮЧЕНИЕ

Подтвержден многокритериальный метод принятия решения – метод анализа иерархий, применен алгоритм оценки и повышения степени согласованности матриц парных сравнений. Предложенный метод экспертной оценки позволяет осуществить выбор параметров обработки, понизить трудоемкость восстановительных работ при неизменном качестве восстановленной поверхности цапфы мельницы.

Список литературы

5. Ломакин В.В., Лициренко М.В., Асадуллаев Р.Г. Комплекс критериев и алгоритмическое обеспечение процесса принятия решений при создании систем управления наружным освещением // Фундаментальные исследования: научный журнал. 2014. №11. С. 2370-2374.
References

4. Lomakin V. V., Lifirenko M.V. An algorithm to increase the degree of consistency of the pairwise comparison matrix when conducting expert interviews // Fundamental research. 2013. No. 11. PP .1798 – 1803.
5. Lomakin V. V., Lifirenko M.V., Ibrahimov, R.G. Complex criteria and algorithmic support of decision-making at creation of control systems for external lighting // Fundamental research: the scientific journal. 2014. No. 11. PP. 2370-2374.

Bondarenko Julia Anatolyevna, doctor of technical sciences, docent, professor of the Department of mechanical engineering
Lomakin Vladimir Vasylievich, candidate of technical sciences, associate professor, head of the Department of applied informatics and information technologies
Bestuzheva Olga Vasilievna, master student of the Department of applied informatics and information technologies

INFORMATION TECHNOLOGIES