Федеральное государственное казённое военное образовательное учреждение высшего образования «Академия Федеральной службы охраны Российской Федерации», ул. Приборостроительная, д. 35, г. Орёл, 302034, Россия

e-mail: wvxp@mail.ru

Аннотация
Проведенные исследования в области развития интеллектуальных залов совещаний показали наличие у них ряда недостатков. С целью их устранения была предложена концепция интеллектуального зала совещаний, в которой реализованы различные подсистемы под управлением общего устройства управления. Важной составляющей данной концепции является подсистема оповещения, реализующая функции речевого сообщения информации пользователям. В качестве механизма оповещения используется оптимальный синтезатор речи, выбранный исходя из критериев доступности, количества голосов, гибкости настроек и типа программного ядра. Для непосредственной передачи синтезированной речи необходимо наличие громкоговорителей. Для эффективного и качественного оповещения требуется выбрать конкретные технические устройства оповещения. В связи с этим стоит задача расчета необходимого количества громкоговорителей и их мощности, а также выбора конкретного образца из имеющихся в продаже. Первая часть задачи решается путем использования известных методов расчета количества громкоговорителей и требуемой мощности. Для решения второй части необходимо выделить наиболее существенные критерии для сравнения конкретных образцов и, используя известный метод сравнения, выявить оптимальное техническое устройство.

Ключевые слова: интеллектуальное пространство; зал; исполнительные модули; звук; автоматизация; громкоговорители, оповещение.

UDC 004.75
Kuznetsov D.A. Kiselev U.V. Kravchenko V.R.

Federal state military educational institution of higher professional education "Academy of the Federal security service of the Russian Federation", 35 Priborostroitelnyaya St, Orel, 302034, Russia

e-mail: wvxp@mail.ru

Abstract
The conducted researches in the field of development of intellectual halls of meetings have shown presence of a number of shortcomings at them. For the purpose of their elimination the concept of the intellectual hall of meetings in which various subsystems under control of the general control unit are realized has been offered. An important component of this concept is the notification subsystem realizing functions of speech reporting of information to users. As the mechanism of the notification the optimum synthesizer of the speech chosen proceeding from criteria of availability, number of votes, customizability and type of a program kernel is used. Direct transfer of the synthesized speech requires existence of loudspeakers. For the effective and qualitative notification it is required to choose concrete samples of technical devices of the notification. In this regard there is a problem of calculation of necessary number of loudspeakers and their power and also the choice of a concrete sample from available on sale. The first part of a problem is solved by use of the known methods of calculation of number of loudspeakers and the required
power. For the solution of the second part it is necessary to mark out the most essential criteria for comparison of concrete samples and, using the known method of comparison, to reveal the optimum technical device.

Keywords: intellectual space; room; executive modules; sound; automation, loudspeakers, notification.

ВВЕДЕНИЕ

Проведенный анализ прототипов интеллектуальных залов совещаний [1] выявил ряд недостатков, одним из которых является отсутствие в них подсистемы оповещения [2]. Данная подсистема предназначена для информирования пользователей о различных событиях в интеллектуальном зале. В частности, важную роль она играет в подсистеме аутентификации и управления доступом, например, подсистема оповещения может использоваться для приветствия участников совещания и сообщения им необходимой информации, такой как место участника в зале, повестки дня и т.п. В таком случае элементы подсистемы оповещения устанавливаются в холле перед конференц-залом, что определяет необходимость расчета требуемого количества громкоговорителей и их мощности, которые обеспечат оптимальный по качеству и громкости звук.

ОСНОВНАЯ ЧАСТЬ

Постановка задачи

Расчет параметров подсистемы оповещения будет производиться для холла кафедры института. Назначением подсистемы оповещения является приветствие сотрудников кафедры, механизм оповещения – синтезатор речи [3]. Имеется помещение площадью 30 м² и высотой потолка 2,6 м. Необходимо рассчитать требуемое количество и мощность громкоговорителей, обоснованно выбрать их конкретную модель.

Решение поставленной задачи

Необходимое количество громкоговорителей определим по имеющейся таблице [4]:

<table>
<thead>
<tr>
<th>Высота потолка, м</th>
<th>25</th>
<th>35</th>
<th>50</th>
<th>80</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>3,5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4,5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5,5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Имеющиеся данные позволяют сделать вывод, что для рассматриваемого помещения достаточно использовать 4 громкоговорителя. Рассчитаем необходимую мощность громкоговорителей.

Типовой уровень шума в помещении типа «Тихий офис» составляет 63 дБ [5]. Для качественного оповещения уровень трансляции должен превышать уровень шума на 15 дБ. Учитывая высоту потолка 2,6 м, примем ослабление сигнала равным 6 дБ (худший случай).

Следовательно, требуемая мощность громкоговорителя:
\[P_t = P_w + P_{osl} + 15 = 84, \text{ дБ} \] (1)

где \(P_t \) – уровень мощности громкоговорителя, дБ; \(P_w \) – уровень шума в помещении, дБ; \(P_{osl} \) – запас на ослабление, дБ.

Зная номинальную мощность громкоговорителя и чувствительность, рассчитаем уровень его звукового давления:

\[P_l = SPL + 10 \log(P_t), \text{ дБ} \] (2)

где \(P_l \) – мощность громкоговорителя, Bt; \(SPL \) – чувствительность громкоговорителя, дБ; \(P_t \) – мощность громкоговорителя, Bt.

Выражение (2) означает, что при каждом удвоении мощности источника уровень его звукового давления увеличивается на 3 дБ. Критерием выбора громкоговорителя является выполнение условия:

\[P_l \geq P_t. \] (3)

Указанному требованию соответствуют следующие модели громкоговорителей: APT-01A (Inter-M) [6], APT-03A (Inter-M) [7], PC-06T (Roxton) [8], PA-03T (Roxton) [9], KS-813 [10], ASK-530 [11].

С учетом изложенного для выбора технических средств предлагается методика выбора, включающая следующие этапы [12]:
1) выполняются парные сравнения элементов каждого уровня. Результаты сравнений переводятся в числа с помощью таблицы 2;

<table>
<thead>
<tr>
<th>Шкала относительной важности</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень важности</td>
<td>Количество значение</td>
</tr>
<tr>
<td>Равная важность</td>
<td>1</td>
</tr>
<tr>
<td>Умеренное превосходство</td>
<td>3</td>
</tr>
<tr>
<td>Существенное превосходство</td>
<td>5</td>
</tr>
<tr>
<td>Значительное превосходство</td>
<td>7</td>
</tr>
<tr>
<td>Очень большое превосходство</td>
<td>9</td>
</tr>
</tbody>
</table>

2) вычисляются вес критериев \(\omega_i \) и коэффициенты важности для элементов каждого уровня \(V_{ij} \):

\[\omega_i = \frac{W_i}{\sum_{i=0}^{N} W_i}, \] (4)

где \(W_i \) – собственный вектор, определяемый как корень \(n \)-й степени (\(n \) – размерность матрицы) из произведений элементов каждой строки матрицы сравнений для критериев; \(N \) – число критериев.

\[V_{ij} = \frac{W_i}{\sum_{j=0}^{M} W_{ij}}, \] (5)

где \(W_{ij} \) – собственный вектор матрицы сравнений альтернатив по \(i \)-му критерию; \(M \) – число альтернатив.
3) подсчитывается количественный показатель качества \(V_j \) каждой из альтернатив и определяется наилучшая альтернатива:

\[
V_{ij} = \sum_{i=0}^{N} \omega_i V_{ij},
\]

где \(V_j \) – показатель качества \(j \)-й альтернативы; \(\omega_i \) – вес \(i \)-го критерия; \(V_{ij} \) – коэффициент важности \(j \)-й альтернативы по \(i \)-му критерию.

Ниже рассмотрим эти этапы применительно к решаемой задаче. Составим матрицу сравнений для избранных критериев (табл. 3).

Таблица 3
Matrix of comparisons for criteria

<table>
<thead>
<tr>
<th>Критерий</th>
<th>Цена</th>
<th>Уровень давления</th>
<th>Мощность</th>
<th>Частотный диапазон</th>
<th>Собственный вектор</th>
<th>Вес критерия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Цена</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2,59</td>
<td>0,072</td>
</tr>
<tr>
<td>Уровень давления</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1,31</td>
<td>0,036</td>
</tr>
<tr>
<td>Мощность</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>0,759</td>
<td>0,021</td>
</tr>
<tr>
<td>Частотный диапазон</td>
<td>1/5</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>0,38</td>
<td>0,010</td>
</tr>
</tbody>
</table>

Матрицы сравнений альтернатив по каждому из критериев приведены в таблицах 4–7.

Таблица 4
Matrix of comparisons of alternatives by criterion of frequency range

<table>
<thead>
<tr>
<th>Альтернатива</th>
<th>APT-01A</th>
<th>APT-03A</th>
<th>PC-06T</th>
<th>PA-03T</th>
<th>KS-813</th>
<th>ASK-530</th>
<th>Собственный вектор</th>
<th>Вес</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT-01A</td>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>0,577</td>
<td>0,08</td>
</tr>
<tr>
<td>APT-03A</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>0,577</td>
<td>0,08</td>
</tr>
<tr>
<td>PC-06T</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1,73</td>
<td>0,245</td>
</tr>
<tr>
<td>PA-03T</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1,73</td>
<td>0,245</td>
</tr>
<tr>
<td>KS-813</td>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>0,69</td>
<td>0,098</td>
</tr>
<tr>
<td>ASK-530</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1,73</td>
<td>0,245</td>
</tr>
</tbody>
</table>

Таблица 5
Matrix of comparisons of alternatives by criterion of the price

<table>
<thead>
<tr>
<th>Альтернатива</th>
<th>APT-01A</th>
<th>APT-03A</th>
<th>PC-06T</th>
<th>PA-03T</th>
<th>KS-813</th>
<th>ASK-530</th>
<th>Собственный вектор</th>
<th>Вес</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT-01A</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>1,57</td>
<td>0,024</td>
</tr>
<tr>
<td>APT-03A</td>
<td>1/3</td>
<td>1</td>
<td>5</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0,62</td>
<td>0,009</td>
</tr>
<tr>
<td>PC-06T</td>
<td>1/5</td>
<td>1/5</td>
<td>1</td>
<td>1/5</td>
<td>1/5</td>
<td>1/5</td>
<td>0,26</td>
<td>0,004</td>
</tr>
<tr>
<td>PA-03T</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2,26</td>
<td>0,035</td>
</tr>
<tr>
<td>KS-813</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1,57</td>
<td>0,024</td>
</tr>
<tr>
<td>ASK-530</td>
<td>1/3</td>
<td>3</td>
<td>5</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>1,08</td>
<td>0,016</td>
</tr>
</tbody>
</table>
Таблица 6
Matrix of comparisons of alternatives by criterion of level of sound pressure

<table>
<thead>
<tr>
<th>Альтернатива</th>
<th>APT-01A</th>
<th>APT-03A</th>
<th>PC-06T</th>
<th>PA-03T</th>
<th>KS-813</th>
<th>ASK-530</th>
<th>Собственный вектор</th>
<th>Вес</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT-01A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1/3</td>
<td>1,20</td>
<td>0,030</td>
</tr>
<tr>
<td>APT-03A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1/3</td>
<td>1,20</td>
<td>0,030</td>
</tr>
<tr>
<td>PC-06T</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1/3</td>
<td>1,20</td>
<td>0,030</td>
</tr>
<tr>
<td>PA-03T</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>0,48</td>
<td>0,012</td>
</tr>
<tr>
<td>KS-813</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>0,48</td>
<td>0,012</td>
</tr>
<tr>
<td>ASK-530</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2,49</td>
<td>0,063</td>
</tr>
</tbody>
</table>

Таблица 7
Matrix of comparisons of alternatives by criterion of power

<table>
<thead>
<tr>
<th>Альтернатива</th>
<th>APT-01A</th>
<th>APT-03A</th>
<th>PC-06T</th>
<th>PA-03T</th>
<th>KS-813</th>
<th>ASK-530</th>
<th>Собственный вектор</th>
<th>Вес</th>
</tr>
</thead>
<tbody>
<tr>
<td>APT-01A</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>1/3</td>
<td>3</td>
<td>5</td>
<td>1,30</td>
<td>0,203</td>
</tr>
<tr>
<td>APT-03A</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>1/5</td>
<td>1</td>
<td>3</td>
<td>1,20</td>
<td>0,185</td>
</tr>
<tr>
<td>PC-06T</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1/5</td>
<td>3</td>
<td>5</td>
<td>1,88</td>
<td>0,293</td>
</tr>
<tr>
<td>PA-03T</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,83</td>
<td>0,129</td>
</tr>
<tr>
<td>KS-813</td>
<td>1/3</td>
<td>1</td>
<td>1/3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0,83</td>
<td>0,129</td>
</tr>
<tr>
<td>ASK-530</td>
<td>1/5</td>
<td>1/3</td>
<td>1/5</td>
<td>1/3</td>
<td>1/3</td>
<td>1</td>
<td>0,36</td>
<td>0,056</td>
</tr>
</tbody>
</table>

На основе этих таблиц могут быть рассчитаны показатели качества каждой из альтернатив. Проведенные вычисления позволяют определить:

\[
\begin{align*}
V_1 &= 0,072 \times 0,024 + 0,036 \times 0,030 + 0,021 \times 0,203 + 0,010 \times 0,08 = 0,007 \\
V_2 &= 0,072 \times 0,009 + 0,036 \times 0,030 + 0,021 \times 0,185 + 0,010 \times 0,08 = 0,006 \\
V_3 &= 0,072 \times 0,004 + 0,036 \times 0,030 + 0,021 \times 0,293 + 0,010 \times 0,245 = 0,009 \\
V_4 &= 0,072 \times 0,035 + 0,036 \times 0,012 + 0,021 \times 0,129 + 0,010 \times 0,245 = 0,005 \\
V_5 &= 0,072 \times 0,024 + 0,036 \times 0,012 + 0,021 \times 0,129 + 0,010 \times 0,098 = 0,005 \\
V_6 &= 0,072 \times 0,016 + 0,036 \times 0,063 + 0,021 \times 0,056 + 0,010 \times 0,245 = 0,007 \\
\end{align*}
\]

Полученные значения позволяют определить, что наилучшей является альтернатива 3. Соответственно, для разрабатываемой подсистемы оповещения целесообразно применять 4 громкоговоритель PC-06T (Roxton) [8].

ЗАКЛЮЧЕНИЕ

Таким образом, произведенный расчет необходимого количества громкоговорителей и их мощности, осуществлен выбор оптимального по критериям цены, мощности, уровня звукового давления и диапазона частот изделия, отвечающего требованиям поставленной задачи. Данное устройство позволяет добиться максимальной эффективности с точки зрения показателя ценакачество и обеспечит необходимый уровень громкости в соответствии с действующими стандартами.
Список литературы

References

Kuznetsov Denis Andreevich, student Academy of the Federal security service of the Russian Federation
Kisel’ev Uriy Vladimirovich, graduate student Academy of the Federal security service of the Russian Federation
Kravchenko Vadim Romanovich, candidate of technical sciences, associate professor, Academy of the Federal security service of the Russian Federation