16+
DOI: 10.18413/2313-8955-2015-1-4-125-131

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ПРОИЗВОДНЫХ СЕРОУГЛЕРОДА

Aннотация

Статья представляет собой обзор литературы современных методик определения сероуглерода при содержании его в каких-либо объектах в незначительных количествах. Поскольку учитывая токсичность данного соединения и возможности его попадания в антропогенную среду, разра-ботка новых чувствительных и воспроизводимых в условиях различных лабораторий методик является актуальной задачей современной науки. В статье подробно рассмотрены хроматографические методы анализа сероуглерода: тонкослойная хроматография, газовая хроматография, жидкостная хроматография, высокоэффективная жидкостная хроматография; спектрофотометрические методы; масс-спектрометрия; полярография на примере анализа тетурама.


Сероуглерод считается одним из главных загрязнителей воздуха рабочей зоны нефтеперерабатывающих или производящих искусственное волокно, сахар, кокс предприятий. В настоящее время наиболее популярным методом анализа воздуха является, несомненно, газовая хроматография [1]. Основное достоинство метода – способность разделять сложные, многокомпонентные смеси химических веществ, состоящие из 100–300 и более индивидуальных соединений.

Для определения сероуглерода в воздухе рабочей зоны производственных помещений рекомендован фотометрический метод с предварительным абсорбционным концентрированием компонента в жидкую фазу [2], что весьма удлиняет время анализа и приводит к дополнительному расходу реагентов и погрешностям. Перспективно для этой цели использование молекулярных сорбционно-спектроскопических методов, сочетающих хемосорбционное концентрирование определяемого компонента и измерение оптических характеристик продукта реакции на поверхности твердотельного чувствительного элемента (ТЧЭ) [3-5]. Формирование аналитического сигнала в данном случае связано с реакциями между определяемым компонентом и органическим реагентом в фазе ТЧЭ. Операция концентрирования позволяет добиться требуемой чувствительности, а использование ТЧЭ часто сводит к минимуму пробоподготовку. Концентрирование с одновременным химическим преобразованием является динамическим процессом, зависящим от скоростей химической реакции и сорбции вещества из газовой фазы. Для аналитической химической реакции на сорбенте существуют взаимосвязанные сорбционные характеристики, обеспечивающие необходимые уровни предела обнаружения, точности, границ диапазона определяемых содержаний, и термодинамические параметры, характеризующие методологическое единство концентрирования, химического преобразования и последующего спектроскопического определения [6].

На основании описанной выше реакции с солями меди предложено сорбционно–фотометрическое определение сероуглерода в воздухе рабочей зоны. Выбрана аналитическая система, образующая ярко окрашенный диэтанолдитиокарбаминат меди (II), и матрица (целлюлоза-фильтр), определены оптимальные условия анализа. Содержание сероуглерода в поглотительном растворе определяли фотометрическим методом по окраске диэтилдитиокарбамата меди (II) [7].

Для хроматографического определения состава головной фракции сырого бензола и органической фазы после связывания CS2 аммиаком использовали хроматограф с детектором по теплопроводимости Кристалл Люкс – 4000 [8].

Условия хроматографирования следующие [9]: газ–носитель – гелий; фаза – ПЕГА, 15%; носитель – динахром; температура термостатирования – 65°С; скорость газа-носителя – 40 мл/мин; длина колонки – 4,5 м.

Однако следует отметить низкую чувствительность детектора по теплопроводности, делающую данную методику малопригодной для анализа следовых количеств сероуглерода.

Для определения примеси сероуглерода в бензоле, толуоле, четыреххлористом углероде отбирают 1 мл исследуемого раствора, содержащего 0,025 – 0,10 мг сероуглерода, добавляют 1 мл 1%-ного раствора диэтиламина в чистом бензоле (или в четыреххлористом углероде), вводят 1 мл 0,03%-ного раствора ацетата меди в абсолютном этиловом спирте, взбалтывают и разбавляют этиловым спиртом до объема 10 мл. Желтую окраску раствора сравнивают с окраской стандартных растворов [10, 11]

В свою очередь, методики анализа тетурама могут представлять определенный интерес из-за их возможной модификации для определения самого сероуглерода.

Для идентификации тетраэтилтиурамдисульфида может быть использована колебательная спектрофотометрия. Инфракрасный спектр вещества в области от 1600 до 400 см-1 должен иметь полное совпадение полос поглощения с полосами поглощения спектра стандарта [12, 13].

Согласно методике определения, тетраэтилтиурамдисульфид запрессовывают в таблетку с бромидом калия и исследуют поглощения образца в диапозоне частот 4000–400 см-1, применяя ИК-спектрофотометр JMPAKT 400d фирмы «Nicolet» (США) с детектором DTOS KBr. Оптическое разрешение составляло 4 см-1, количество сканирований – 32. Формой регистрации спектра являлось пропускание. При исследовании ИК-спектра тетраэтилтиурамдисульфида отмечено присутствие в нем ряда характеристических полос, соответствующих определённым видам колебаний участков молекулы рассматриваемого вещества. В высокочастотной части ИК-спектра (область 2868–2972 см-1) тетраэтилтиурамдисульфида присутствуют полосы, соответствующие валентным асимметрическим и симметрическим колебаниям С–Н связи в метильных и метиленовых группах. Полоса С максимумов в области 1375 см-1 предположительно может соответствовать симметричным деформационным колебаниям С–Н в метильной группе. Асимметрическим деформационным колебаниям С–Н связей в СН3-группе соответствует полоса с максимумом при 1456 см-1. В интервале частот 1072–1092 располагаются максимумы полос, обусловленных валентными колебаниями С=S связи. В ИК-спектре имеются полосы, которые могут быть отнесены к колебаниям S–S-связи, деформационным колебаниям N–C=S и колебаниям с участием связи С=S [12, 13].

В качественном анализе дитиокарбаминатов используются химические реакции. Так, 0,01 г вещества растворяют в 1 мл спирта 95% при легком подогревании. После охлаждения прибавляют 1 мл 10% раствора натрия сульфита, 2 мл раствора аммиака и 1 мл 1% раствора меди сульфата; выпадает объемистый коричневый осадок медной соли.

Для определения серы в молекуле дитиокарбаминатов 0,01 г анализируемые вещества растворяют в 1 мл спирта 95% при легком нагревании, прибавляют по каплям бромную воду до неисчезающей желтой окраски, подкисляют 0,5 мл кислоты хлористоводородной разведенной, нагревают раствор на водяной бане до обесцвечивания, прибавляют 1 мл раствора бария хлорида; выпадает белый осадок [12, 13].

Существует множество примеров применения высокоэффективной жидкостной хроматографии (ВЭЖХ) при определении производных карбаминовой и дитиокарбаминовой кислот в воде, биологическом материале и других объектах [14-19].

При использовании хроматографии в тонком слое сорбента (ТСХ) хроматографирование пестицидов дитиокарбаминатной структуры проводят на пластинке «Sorbfil» ПТСХ-АФ UV-254 (связующее – силиказоль, толщина слоя 110 мкм) без активирования. Пластинки проявляют модифицированным по Мунье реактивом Драгендорфа и 0,05% раствором бромфенолового синего (БФС).

С реактивом Драгендорфа данные пестицидные дают оранжевые пятна, с БФС – черные или серые пятна после облучения пластинки в УФ-свете (254 нм) в течение 20 мин и снятия фона 2%-ным раствором лимонной кислоты. Подвижными фазами при этом являются смеси растворителей: хлороформ–метанол–25% раствор аммиака (31:8:1); толуол–ацетон–96% этанол–25% раствор аммиака (45:45:7:3); бензол–96 % этанол (8:2); этилацетат–ацетон–вода (4:5:1).

Сопоставление результатов использования цветных реакций и величин Rf позволяет с высокой степенью достоверности идентифицировать те или иные пестициды рассматриваемой структуры [20].

Все объекты дают характерную для балластных веществ голубую флюоресценцию в УФ-лучах. Эти же объекты в некоторых опытах образовывают сероватые пятна в реакциях с БФС. Величина их Rf находится в пределах от 0 до 0,15 в зависимости от применяемой системы. С реактивом Драгендорфа в контрольных опытах окрашиваний не наблюдается. Для установления границы обнаружения к 100 г печени добавляют от 0,5 до 5 мг того или иного пестицида с интервалом 0,5 мг [21, 22].

Для количественного определения тетраэтилтиурамдисульфида предложено комплексонометрическое титрование. Около 0,5 г вещества (точная навеска) помещают в коническую колбу с притертой пробкой вместимостью 250 мл и при слабом нагревании на водяной бане (не доводя до кипения) растворяют в 25 мл спирта 95% при постоянном перемешивании. По охлаждении к раствору постепенно прибавляют восстанавливающую смесь, состоящую из 10 мл 10% раствора натрия сульфита и 25 мл 5% раствора аммиака. Затем при перемешивании прибавляют в течение 5 мин 25 мл 0,1 М раствора никеля сульфата, и периодически перемешивая, оставляют на 1 ч. Затем прибавляют 25 мл хлороформа и взбалтыванием переводят осадок в хлороформный слой. Прибавляют 10 мл аммиачного буферного раствора, 100 мл воды и титруют избыток никеля сульфата 0,05 М раствором трилона Б до появления фиолетовой окраски (индикатор – индикаторная смесь мурексида, 0,1 г).

Существует вариант фотометрического титрования тетраэтилтиурамдисульфида на основе его реакции с ионами меди (II) с образованием продукта, поглощающего свет в видимой области спектра (λмакс = 401–403 нм). Эта реакция применена Сичко А.И. и Никоновой А.Г. для количественного определения тетраэтилтиурамдисульфида. Исследования проводили в экспериментально установленных оптимальных условиях прохождения химической реакции тетраэтилтиурамдисульфида с сульфатом меди (II). Готовили 0,002 М водный раствор сульфата меди (II) и 0,001 М этанольный (ацетоновый) раствор тетраэтилтиурамдисульфида. Стандартизацию титрованного раствора осуществляли комплексонометрическим методом в нейтральной среде, используя в качестве индикатора мурексид (переход окраски от желто-оранжевой до красно-фиолетовой). Титрование тетраэтилтиурамдисульфида проводили с помощью фотометрического титратора Т-107 при различных значениях рН, которые создавали 1 М раствором гидроксида натрия (калия). По данным опытов строили кривые титрования в координатах: величина светопропускания, % – объем раствора сульфата меди (II). При введении в испытуемый раствор 2–8 мл 1 М раствора гидроксида натрия кривые титрования имеют прямолинейные ветви с резко выраженными точками эквивалентности при одинаковом значении светопропускания, дальнейшее увеличение концентрации щелочи приводит к уменьшению чувствительности. Поэтому предел концентраций 2–8 мл 1 М раствора гидроксида натрия (калия) принят как оптимальный. Данные исследования позволили рассчитать титр сульфата меди по исследуемому веществу и провести количественное определение тетраэтилтиурамдисульфида в субстанции и лекарственных формах [19, 23].

Для количественного определения тетраэтилтиурамдисульфида был использован полярографический метод. Для изучения полярографического поведения вещества из точных навесок готовят рабочие растворы с концентрациями от 7·10‾5 до 10‾3 моль/л. Полярограммы регистрируют на полярографе РО-4 («Radiometr», Дания) с использованием ртутного капающего электрода с принудительным отрывом капли (М = 0,968 мг/с, t = 0,32 c). Анодом служит насыщенный каломельный электрод. Полярографическая ячейка термостатируется (25°С). Кислород из растворов удаляют непосредственно в полярографической ячейке путём продувки их азотом, насыщенным парами фонового раствора [24].

Известна методика определения тетраметилтиурамдисульфида (ТМТД) и трихлорфенолята меди (ТХФМ) в трупном материале методом производной спектрофотометрии. Одновременно производят количественное определение препаратов по калибровочному графику. С этой целью определяют оптическую плотность извлечения после очистки при λмах=292 нм (для ТХФМ) и 390 нм (для ТМТД). Из полученных значений вычитают величину оптической плотности в контрольном опыте. Эти цифровые данные затем используют для расчета содержания искомого препарата.

Результаты расчетов по второй производной и калибровочному графику не имеют больших расхождений, оба метода количественного определения оказываются почти равноценными. Однако в тех случаях, когда искомый препарат обнаруживают в загнившем материале, дающем значительно загрязненные извлечения, определение по калибровочному графику при отсутствии контрольного опыта приводит к получению завышенных результатов по сравнению с методом производной спектрофотометрии [15, 25-27].

Много работ посвящено разработке новых методик исследования карбаминатных соединений и их метаболитов, с применением современных методов анализа ВЭЖХ, жидкостной (LC) и газовой хроматографии (GC) в комбинации с различными вариантами масс-спектрометрии (MS).

Благодаря высокой точности и чувствительности все большее применение в исследовании карбаматов находит метод масс-спектрометрии с времяпролетным (TOF-MS) или квадрупольным времяпролетным (QqTOF-MS) анализаторами масс [28].

Метод TOF-MS применяется как в сочетании с жидкостной хроматографией так и с ВЭЖХ. Авторы предлагают объединенное использование газовой хроматографии и жидкостной хроматографии ультравысокого давления, оба соединенные с масс-спектрометрией с времяпролетным анализатором масс (TOF MS). В этой работе исследовались случаи отравления пчелы медоносной. Большинство соединений были идентифицированы обоими методами, но UHPLC-(Q)TOFMS показал свою более высокую разрешающую возможность в случае обнаружения метаболитов, поскольку большинство метаболитов были более полярными, чем исходные вещества [29].

Использование потенциала жидкостной хроматографии квадруполя времяпролетной масс-спектрометрии (LC-QqTOF-MS) позволяет идентифицировать и подтвердить карбосульфан и семь из его главных метаболитов (карбофуран, 3-гидроксикарбофуран, 3-кетокарбофуран, 3-гидрокси-7-фенол карбофуран, 3-кето-7-фенолкарбофуран, 7-фенолкарбофуран) в следовых количествах в растительных объектах. Разработанный метод состоит из герметичной жидкой экстракции (PLE) и LC-QqTOF-MS (0,05 мг/кг за сумму карбосульфан, карбофуран и 3-гидроксикарбофуран). Полнота выделения колебалась от 55% до 94% с диапазоном определения от 10 (для карбосульфан, карбофуран, 3-гидроксикарбофуран) до 70 мг/кг (3-кето-7-фенолкарбофуран). Метод точен, с относительными среднеквадратичными отклонениями 5%–11% [30].

Представлены результаты исследований, по разработке методик тандемной масс-спектрометрии (MS/MS) для определения карбаматов в объектах различного природного происхождения [31-33].

Один из примеров применения метода ВЭЖХ в комбинации с масс-спектрометрией с химической ионизацией или фотоионизацией при атмосферном давлении (LG-APCI/APPI-MS или LC-ESI-MS/MS) для количественного определения 11 карбаматов и их метаболитов (сульфоксид алдикарба, сульфон алдикарба, оксамил, метомил, 3-гидроксикарбофуран, карбендазим, алдикарб, пропоксур, карбофуран, карбарил и метиокарб) в детском фруктовом питании. Сбор данных под MS/MS был достигнут, накладывая множественный контроль реакции двух перемещений иона фрагмента, чтобы обеспечить высокую чувствительность и селективность для  предварительной идентификации и подтверждения. Пределы чувствительности метода были менее чем 0,2 мкг/кг [34].

* * *

Представленный обзор литературы позволяет судить о недостаточном количестве аналитического инструментария, позволяющего фиксировать сероуглерод при содержании его в каких-либо объектах в незначительных количествах. Учитывая токсичность данного соединения, возможности его попадания в антропогенную среду [35], разработка новых чувствительных и воспроизводимых в условиях различных лабораторий методик является актуальной задачей современной науки.

Список литературы

1. Другов Ю.С., Родин А.А. Газохроматографический анализ загрязненного воздуха: Практическое руководство. М.: БИНОМ. Лаборатория знаний, 2006. 528 с.

2. Руководство по контролю вредных веществ в воздухе рабочей зоны: Справ. изд. / С.И. Муравьева, М.И. Буковский, Е.К. Прохорова [и др.]. М.: Химия, 1991. 368 с.

3. Рунов В.К., Качин С.В. Молекулярные сорбционно-спектроскопические методы анализа вод и воздуха // Заводская лаборатория. 1993. Т.59, №7. С. 1-4.

4. Брыкина Г.Д. Марченко Д.Ю., Шпигун О.А. Твердофазная спектрофотометрия // Журнал аналитической химии. 1995. Т. 50, №5. C.484-491.

5. Методы твердофазной спектроскопии в анализе воздуха рабочей зоны / С.В. Качин, Н.А. Козель, С.А. Сагалаков [и др.] // Вестник Красноярского гос. ун-та. Естественные науки. 2003. № 2. С. 115-122.

6. Попов А.А., Рунов В.К. Сорбционно-фотометрическое и сорбционно-люминесцентное определение микрокомпонентов в газах // Концентрирование следов органических соединений. М.: Наука, 1990. С. 143-156.

7. Минздрав СССР. Методические указания на определение вредных веществ в воздухе. Вып. 1–5. М.: ЦРИА «Морфлот», 1981. С. 87.

8. Исследование процесса извлечения сероуглерода из головной фракции сырого бензола [Электронный ресурс]. Режим доступа: URL: http://masters.donntu.org/2010/feht/kolbasa/diss/index.htm (дата обращения: 03.12.2015).

9. Глузман Л.Д. Лабораторный контроль коксохимического производства. М.: «Металлургия», 1968. 473 с.

10. Примесь – сероуглерод. [Электронный ресурс]. Режим доступа: URL: http://www.ngpedia.ru/id318465p1.html (дата обращения: 03.12.2015).

11. Коренман И.М. Фотометрический анализ. Рипол Классик, 2014. 283 с.

12. ФСП–42-0015605804 (таблетки тетурама) (государственный стандарт качества лекарственного средства). ОАО «Татхимфармпрепараты», 2005. 9 с.

13. ФСП–42-0550630805 (тетурам) (государственный стандарт качества лекарственного средства). ОАО «Фармстандарт-Лексредства», 2006. 10 с.

14. Клисенко М.А. Александрова Л.Г. Определение остаточных количеств пестицидов. Киев: Здоров’я, 1983. 248 с.

15. Методы определения микроколичеств пестицидов в продуктах питания, кормах и внешней среде / под ред. М.А. Клисенко. М.: Колос, 1992. 566 с.

16. Особенности определения ТМТД в биологическом материале / В.К. Шорманов [и др.] // Судебно-медицинская экспертиза. 2010. Т. 53, № 2. С. 45-49.

17. Шорманов В.К., Коваленко Е.А., Дурицын Е.П. Определение фурадана в биологических жидкостях // Судебно-медицинская экспертиза. 2005. Т. 48, № 5. С. 36-39.

18. Cabrera H.A.P., Menezes H.C., Oliveira J.V. Evaluation of Residual Levels of Benomyl, Methyl Parathion, Diuron, and Vamidothion in Pineapple Pulp and Bagasse (Smooth Cayenne) // J. Agric. Food Chem. 2000. Vol. 48, № 11. Р. 5750-5753.

19. Farago A. Nachweise und quantitative Bestimmung des Disulfiram in biologischem Material // Archif fur Toxicologie. 1967. Bd. 22. P. 396-399.

20. Sita F., Chmelova-Hlavata V., Chmel K. Chromatografische Analyse von Drogen. [S. l.]: Berlin, 1975. Р. 1-101.

21. Мужановський Э.Б., Фартушний А.Ф., Седов А.I. Визначення тетураму i тiураму в бiологичному матерiалi // Фармацевтичний журнал. 1979. № 2. С. 54-57.

22. Мусийчук Ю.И. Врачебная экспертиза при отравлениях химическими веществами. СПб, 2007. 64 с.

23. Сичко А.И., Никонова А.Г. Фотометрическое титрование тетурама // Фармация. 1989. Т.38, № 1. С. 62-64.

24. Повышение селективности полярографического определения тетурама / М.С. Гойзман [и др.] // Химико-фармацевтический журнал. 1991. Т. 25, № 2. С. 77-81.

25. Зайнутдинов Х.С., Вергейчик Т.Х., Икрамов Л.Т. Определение тетраметилтиурамдисульфида и трихлорфенолята меди в трупном материале методом производной спектрофотометрии // Судебно-медицинская экспертиза. 1990. Т. 33, № 4. С. 27-29.

26. Методы определения микроколичеств пестицидов / под ред. М.А. Клисенко. М.: Медицина, 1984. 256 с.

27. Пимков И.В. Спектрофотометрическое определение диэтилдитиокарбамата натрия // Химия и химическая технология. 2007. Т. 50, вып. 6. С. 111-112.

28. García-Reyes J.F., Hernando M.D., Ferrer C. Large Scale Pesticide Multiresidue Methods in Food Combining Liquid Chromatography– Time-of-Flight Mass Spectrometry and Tandem Mass Spectrometry // Anal. Chem. 2007. Vol. 79, № 19. Р. 7308-7323.

29. Portolos T., Ibez M., Sancho J.V. Combined Use of GC-TOF MS and UHPLC-(Q)TOF MS To Investigate the Presence of Nontarget Pollutants and Their Metabolites in a Case of Honeybee Poisoning // J. Agric. Food Chem. 2009. Vol. 57, № 10. Р. 4079-4090.

30. Soler C., Hamilton B., Furey A. Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Analysis of Carbosulfan, Carbofuran, 3-Hydroxycarbofuran, and Other Metabolites in Food) // Anal. Chem. 2007. Vol. 79, № 4. Р. 1492-1501.

31. Inoue T., Nagatomi Yas., Suga K. Fate of Pesticides during Beer Brewing Fate // J. Agric. Food Chem. 2011. Vol. 59, № 8. Р. 3857-3868.

32. Nanita S.C., Pentz Anne M., Bramble Frederick Q. High-Throughput Pesticide Residue Quantitative Analysis Achieved by Tandem Mass Spectrometry with Automated Flow Injection // Anal. Chem. 2009. Vol. 81, № 8. Р. 3134-3142.

33. Wong J., Hao Ch., Zhang K. Development and Interlaboratory Validation of a QuEChERS-Based Liquid Chromatography−Tandem Mass Spectrometry Method for Multiresidue Pesticide Analysis // J. Agric. Food Chem. 2010. Vol. 58, № 10. Р. 5897-5903.

34. Wang J., Cheung W., Grant D. Determination of Pesticides in Apple-Based Infant Foods Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry // J. Agric. Food Chem. 2005. Vol. 53, № 3. Р. 528-537.

35. Методика определения летучих серосодержащих веществ в препаратах для внутривенного введения / Е.Т. Жилякова, А.А. Зинченко, О.О. Новиков [и др.] // Бюл. эксперим. биологии и медицины. 2006. №12. С. 701-703.