Epigenetic and genomic mechanisms in the pathogenesis of posttraumatic stress disorder (review)
Background: Posttraumatic stress disorder is one of the most prominent examples of gene-environment interactions. Psychological traumatization is a dominant, but not the only etiological factor. Over the past 20 years, sufficient data have been accumulated to confirm the role of the hereditary component in the formation of the so-called "vulnerable phenotype”. Epigenetic modifications are considered as a mechanism for environmental (traumatic) exposure provoking changes in gene expression and genome stability, which can lead to specific symptoms. The aim of the study: To summarize and to compare the essential results of studies of epigenetic mechanisms of genome regulation in posttraumatic stress disorder. Materials and methods: A theoretical analysis of the published studies dedicated to epigenetic markers of posttraumatic stress disorder was carried out. The PubMed database was browsed in the aforementioned context. Results: The studies published during the last decades have a number of common characteristics (reliance on retrospective data about a traumatic event obtained by the self-report method; use of available tissues for analysis; use of a retrospective cross-sectional design). The systematics of research is based on both the dominant methodology (search and study of candidate genes; methods of whole-genome or epigenome associations) and the analysis of DNA methylation, posttranslational modifications of histones, and chromatin structural organization. The pathogenesis of posttraumatic stress disorder is also explained in the context of cytogenomic hypothesis (changes in genome instability levels modulate behavior). The limitations and prospects of studying epigenetic mechanisms in the pathogenesis of posttraumatic stress disorder are outlined. Conclusion: Epigenetic and genomic analyses of the molecular basis of PTSD offer the most holistic approach to understanding the interaction between genotype and environment presenting as a traumatic event. The study of epigenetic modifications and genome instability, which are potentially reversible, will contribute to the improvement of the prevention and the provision of clinical and psychological assistance to individuals who have experienced traumatic events.
Faustova AG, Iourov IY. Epigenetic and genomic mechanisms in the pathogenesis of posttraumatic stress disorder (review). Research Results in Biomedicine. 2022;8(1):15-35. Russian.
DOI: 10.18413/2658-6533-2022-8-1-0-2
While nobody left any comments to this publication.
You can be first.
1. Koenen KC, Ratanatharathorn A, Ng L, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychological Medicine. 2017;47(13):2260-2274. DOI: https://doi.org/10.1017/S0033291717000708
2. True WR, Rice J, Eisen SA, et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Archives of General Psychiatry. 1993;50:257-264. DOI: https://doi.org/10.1001/archpsyc.1993.01820160019002
3. Stein MB, Jang KL, Taylor S, et al. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. American Journal of Psychiatry. 2002;159:1675-1681. DOI: https://doi.org/10.1176/appi.ajp.159.10.1675
4. Sartor CE, McCutcheon VV, Pommer NE, et al. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women. Psychological Medicine. 2011;41:1497-1505. DOI: https://doi.org/10.1017/S0033291710002072
5. Zannas AS, Provençal N, Binder EB. Epigenetics of posttraumatic stress disorder: current evidence, challenges, and future directions. Biological Psychiatry. 2015;78(5):327-335. DOI: https://doi.org/10.1016/j.biopsych.2015.04.003
6. Provençal N, Binder EB. The effects of early life stress on the epigenome: From the womb to adulthood and even before. Experimental Neurology. 2015;268:10-20. DOI: https://doi.org/10.1016/j.expneurol.2014.09.001
7. Yehuda R, Lehrner R. Межпоколенческая передача травматических эффектов: предполагаемая роль эпигенетических механизмов. World Psychiatry. 2018;17(3):243-257. DOI: https://doi.org/10.1002/wps.20568
8. Howie H, Rijal CM, Ressler KJ. A review of epigenetic contributions to posttraumatic stress disorder. Dialogues in Clinical Neuroscience. 2019;21(4):417-428. DOI: https://doi.org/10.31887/DCNS.2019.21.4/kressler
9. Guljaeva NV. Stress Neurochemistry: The Chemistry of Stress Reactivity and Stress Sensitivity. Neurochemistry. 2018;35(2):111-114. Russian. DOI: https://doi.org/10.7868/S1027813318020012
10. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington (VA): American Psychiatric Association; 2013.
11. Kostiuk GP, editor. ICD-11. Chapter 6. Mental and behavioral disorders and disorders of neurocognitive development. Statistical classification. Moscow: “KDU”, “Universitetskaya kniga”; 2021. Russian.
12. Miller MW, Sadeh N. Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Molecular Psychiatry. 2014;19:1156-1162. DOI: https://doi.org/10.1038/mp.2014.111
13. Roberts AL, Agnew-Blais JC, Spiegelman D, et al. Posttraumatic stress disorder and incidence of type 2 diabetes mellitus in a sample of women: a 22-year longitudinal study. JAMA Psychiatry. 2015;72:203-210. DOI: https://doi.org/10.1001/jamapsychiatry.2014.2632
14. Berens AE, Jensen SKG, Nelson CA 3rd. Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Medicine. 2017;15(1):135. DOI: https://doi.org/10.1186/s12916-017-0895-4
15. Brewin CR, Andrews B, Valentine JD. Meta-analysis of risk factors for posttraumatic stress disorder in trauma exposed adults. Journal of Consulting and Clinical Psychology. 2000;68:748-766. DOI: https://doi.org/10.1037//0022-006x.68.5.748
16. Duncan LE, Cooper BN, Shen H. Robust findings from 25 years of PTSD genetics research. Current Psychiatry Reports. 2018;20(12):115. DOI: https://doi.org/10.1007/s11920-018-0980-1
17. Caspi A, Houts RM, Belsky DW, et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science. 2014;2(2):119-137. DOI: https://doi.org/10.1177/2167702613497473
18. Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Experimental Neurology. 2012;233:102-111. DOI: https://doi.org/10.1016/j.expneurol.2011.10.032
19. Seckl JR. Glucocorticoids, developmental “programming” and the risk of affective dysfunction. Progress in Brain Research. 2008;167:17-34. DOI: https://doi.org/10.1016/S0079-6123(07)67002-2
20. Mehta D, Klengel T, Conneely KN, et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(20):8302-8307. DOI: https://doi.org/10.1073/pnas.1217750110
21. Liu H, Petukhova MV, Sampson NA, et al. Association of DSM-IV posttraumatic stress disorder with traumatic experience type and history in the World Health Organization World Mental Health Surveys. JAMA Psychiatry. 2017;74:270-281. DOI: https://doi.org/10.1001/jamapsychiatry.2016.3783
22. Checknita D, Ekström TJ, Comasco E, et al. Associations of monoamine oxidase A gene first exon methylation with sexual abuse and current depression in women. Journal of Neural Transmission. 2018;125(7):1053-1064. DOI: https://doi.org/10.1007/s00702-018-1875-3
23. Marzi SJ, Sugden K, Arseneault L, et al. Analysis of DNA methylation in young people: limited evidence for an association between victimization stress and epigenetic variation in blood. American Journal of Psychiatry. 2018;175(6):517-529. DOI: https://doi.org/10.1176/appi.ajp.2017.17060693
24. Leen-Feldner EW, Feldner MT, Knapp A, et al. Offspring psychological and biological correlates of parental posttraumatic stress: review of the literature and research agenda. Clinical Psychology Review. 2013;33(8):1106-1133. DOI: https://doi.org/10.1016/j.cpr.2013.09.001
25. Lambert JE, Holzer J, Hasbun A. Association between parents’ PTSD severity and children’s psychological distress: a meta-analysis. Journal of Traumatic Stress. 2014;27(1):9-17. DOI: https://doi.org/10.1002/jts.21891
26. Yehuda R, Daskalakis NP, Lehrner A, et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. American Journal of Psychiatry. 2014;171:872-880. DOI: https://doi.org/10.1176/appi.ajp.2014.13121571
27. Rodgers AB, Bale TL. Germ cell origins of posttraumatic stress disorder risk: the transgenerational impact of parental stress experience. Biological Psychiatry. 2015;78:307-314. DOI: https://doi.org/10.1016/j.biopsych.2015.03.018
28. Moog NK, Buss C, Entringer S, et al. Maternal exposure to childhood trauma is associated during pregnancy with placental-fetal stress physiology. Biological Psychiatry. 2016;79:831-839. DOI: https://doi.org/10.1016/j.biopsych.2015.08.032
29. Buss C, Entringer S, Moog NK, et al. Intergenerational transmission of maternal childhood maltreatment exposure: implications for fetal brain development. Journal of the American Academy of Child and Adolescent Psychiatry. 2017;56:373-382. DOI: https://doi.org/10.1016/j.jaac.2017.03.001
30. Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: a systematic review. Neuroscience and Biobehavioral Reviews. 2020;112:392-409. DOI: https://doi.org/10.1016/j.neubiorev.2020.02.019
31. Nievergelt CM, Ashley-Koch AE, Dalvie S, et al. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biological Psychiatry. 2018;83(10):831-839. DOI: https://doi.org/10.1016/j.biopsych.2018.01.020
32. Murgatroyd C, Patchev AV, Wu Y, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience. 2009;12:1559-1566. DOI: https://doi.org/10.1038/nn.2436
33. Vijayendran M, Beach SR, Plume JM, et al. Effects of genotype and child abuse on DNA methylation and gene expression at the serotonin transporter. Frontiers in Psychiatry. 2012;3:55. DOI: https://doi.org/10.3389/fpsyt.2012.00055
34. Haramati S, Navon I, Issler O, et al. MicroRNA as repressors of stress-induced anxiety: the case of amygdalar miR-34. The Journal of Neuroscience. 2011;31(40):14191-14203. DOI: https://doi.org/10.1523/JNEUROSCI.1673-11.2011
35. Bam M, Yang X, Zumbrun EE, et al. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Scientific Reports. 2016;6:31209. DOI: https://doi.org/10.1038/srep31209
36. Wingo AP, Almli LM, Stevens JJ, et al. DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression. Nature communications. 2015;6:10106. DOI: https://doi.org/10.1038/ncomms10106
37. Guffanti G, Galea S, Yan L, et al. Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women. Psychoneuroendocrinology. 2013;38(12):3029-3038. DOI: https://doi.org/10.1016/j.psyneuen.2013.08.014
38. Yehuda R, Daskalakis NP, Desarnaud F, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Frontiers in Psychiatry. 2013;4:118. DOI: https://doi.org/10.3389/fpsyt.2013.00118
39. Labonte B, Azoulay N, Yerko V, et al. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Translational Psychiatry. 2014;4:e368. DOI: https://doi.org/10.1038/tp.2014.3
40. Radtke KM, Ruf M, Gunter HM, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry. 2011;1:e21. DOI: https://doi.org/10.1038/tp.2011.21
41. Labonte B, Yerko V, Gross J, et al. Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biological Psychiatry. 2012;72:41-48. DOI: https://doi.org/10.1016/j.biopsych.2012.01.034
42. Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biological Psychiatry. 2016;79(2):87-96. DOI: https://doi.org/10.1016/j.biopsych.2014.11.022
43. Wang Q, Shelton RC, Dwivedi Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: a systematic review and meta-analysis. Journal of Affective Disorders. 2018;118(24):6072-6078. DOI: https://doi.org/10.1002/cncr.27633
44. Klengel T, Mehta D, Anacker C, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience. 2013;16:33-41. DOI: https://doi.org/10.1038/nn.3275
45. McNerney MW, Sheng T, Nechvatal JM, et al. Integration of neural and epigenetic contributions to posttraumatic stress symptoms: the role of hippocampal volume and glucocorticoid receptor gene methylation. PLoS ONE. 2018;13:e0192222. DOI: https://doi.org/10.1371/journal.pone.0192222
46. Zannas AS, Arloth J, Carrillo-Roa T, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biology. 2015;16:266. DOI: https://doi.org/10.1186/s13059-015-0828-5
47. Iourov IY, Vorsanova SG, Kurinnaia OS, et al. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Molecular Biolology. 2021;55:37-46. DOI: https://doi.org/10.1134/S0026893321010155
48. Iourov IY, Yurov YB, Vorsanova SG, et al. Chromosome Instability, Aging and Brain Diseases. Cells. 2021;10(5):1256. DOI: https://doi.org/10.3390/cells10051256
49. Vorsanova SG, Yurov YB, Iourov IY. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Molecular Cytogenetics. 2020;13:16. DOI: https://doi.org/10.1186/s13039-020-00488-0
50. Heng HH, Regan S, Ye CJ. Genotype, environment, and evolutionary mechanism of diseases. Environmental Disease. 2016;1:14-23.
51. Ramikie TS, Ressler KJ. Stress-related disorders, pituitary adenylate cyclase-activating peptide (PACAP)ergic system, and sex differences. Dialogues in Clinical Neuroscience. 2016;18(4):403-413. DOI: https://doi.org/10.31887/DCNS.2016.18.4/kressler
52. Lind MJ, Marraccini ME, Sheerin CM, et al. Association of Posttraumatic Stress Disorder With rs2267735 in the ADCYAP1R1 Gene: A Meta-Analysis. Journal of Traumatic Stress. 2017;30(4):389-398. DOI: https://doi.org/10.1002/jts.22211
53. Maddox SA, Kilaru V, Shin J, et al. Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Molecular Psychiatry. 2018;23(3):658-665. DOI: https://doi.org/10.1038/mp.2016.250
54. Uddin M, Aiello AE, Wildman DE, et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(20):9470-9475. DOI: https://doi.org/10.1073/pnas.0910794107
55. Smith AK, Conneely KN, Kilaru V, et al. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2011;156B(6):700-708. DOI: https://doi.org/10.1002/ajmg.b.31212
56. Bam M, Yang X, Zhou J, et al. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. Journal of Neuroimmune Pharmacology. 2016;11(1):168-181. DOI: https://doi.org/10.1007/s11481-015-9643-8
57. Iourov IY, Vorsanova SG, Yurov YB, et al. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes. 2019;10(5):379. DOI: https://doi.org/10.3390/genes10050379
58. Vorsanova SG, Zelenova MA, Yurov YB, et al. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis. Current Genomics. 2018;19(3):158-162. DOI: https://doi.org/10.2174/1389202918666170719165339
59. Iourov IY, Vorsanova SG, Yurov YB, et al. The Cytogenomic “Theory of Everything”: Chromohelkosis May Underlie Chromosomal Instability and Mosaicism in Disease and Aging. International Journal of Molecular Sciences. 2020;21(21):8328. DOI: https://doi.org/10.3390/ijms21218328
60. Liu G, Ye CJ, Chowdhury SK, et al. Detecting chromosome condensation defects in gulf war illness patients. Current Genomics. 2018;19:200-206. DOI: https://doi.org/10.2174/1389202918666170705150819
61. Mehta D, Bruenig D, Carrillo-Roa T, et al. Genome-wide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatrica Scandinavica. 2017;136(5):493-505. DOI: https://doi.org/10.1111/acps.12778
62. Rutten BPF, Vermetten E, Vinkers CH, et al. Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder. Molecular Psychiatry. 2018;23(5):1145-1156. DOI: https://doi.org/10.1038/mp.2017.120
63. Uddin M, Ratanatharathorn A, Armstrong D, et al. Epigenetic meta-analysis across three civilian cohorts identifies NRG1 and HGS as blood-based biomarkers for post-traumatic stress disorder. Epigenomics. 2018;10(12):1585-1601. DOI: https://doi.org/10.2217/epi-2018-0049
64. de Lange GM. Understanding the cellular and molecular alterations in PTSD brains: the necessity of post-mortem brain tissue. European Journal of Psychotraumatology. 2017;8(1):1341824. DOI: https://doi.org/10.1080/20008198.2017.1341824
65. Bhatt S, Hillmer AT, Girgenti MJ, et al. PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies. Nature Communications. 2020;11:2360. DOI: https://doi.org/10.1038/s41467-020-15930-5
66. Wolf EJ, Logue MW, Hayes JP, et al. Accelerated DNA methylation age: associations with PTSD and neural integrity. Psychoneuroendocrinology. 2016;63:155-162. DOI: https://doi.org/10.1016/j.psyneuen.2015.09.020