Review of clinical trials of promising bispecific candidates for CAR-T cell therapy
Background: CAR-T (Chimeric Antigen Receptor T-Cell) therapy has proven to be highly effective in the treatment of oncohematological diseases. In pivotal clinical trials for CD19-positive tumors (ZUMA-1, ZUMA-3, JULIET, TRANSCEND), complete response rates were 58%, 51%, 40%, and 59%, respectively. However, the success of CAR-T therapy is limited by two major unresolved challenges: acute side effects and cancer recurrence. To prevent recurrence, strategies are being developed to modify the CAR construct and enhance the expansion and persistence of CAR-T cells in the body. Since recurrences often occur due to loss of target antigen expression by tumor cells, targeting two or more tumor antigens may significantly reduce recurrence rates. Aim of the study: This review compiles and analyzes results from clinical trials of bispecific CAR-T therapies and compares key clinical response rates of promising CAR-T candidates with those of approved CAR-T therapies. Materials and methods: Relevant literature was reviewed using PubMed, Scopus, Web of Science, and ClinicalTrials.gov databases. Results: The limited number of clinical trials did not allow for identification of significant differences in primary outcomes of CAR-T therapy. Nevertheless, a trend toward increased relapse-free survival was observed in patients treated with bispecific CAR-T variants compared to monospecific therapies. Recurrence-free survival rates ranged from 61% to 90% for CD19/CD20-targeted therapies, 40% to 85% for CD19/CD22-targeted therapies, and 44% to 61% for monospecific anti-CD19 CAR-T therapy. Conclusion: Cancer recurrence after CAR-T therapy is frequently associated with antigen loss by tumor cells. Clinical trial results suggest that targeting two or more antigens with CAR-T therapies may be an effective approach to reduce recurrence risk without increasing immune or neurotoxicity
Sagdeeva AR, Arslan LA, Rybalov AA, et al. Review of clinical trials of promising bispecific candidates for CAR-T cell therapy. Research Results in Biomedicine. 2025;11(3):451-475. Russian.
DOI: 10.18413/2658-6533-2025-11-3-0-4
While nobody left any comments to this publication.
You can be first.
1. NIC [Электронный ресурс]. List of Targeted Therapy Drugs Approved for Specific Types of Cancer [дата обращения: 25.12.2023]. URL: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/approved-drug-list
2. Hou J, He Z, Liu T, et al. Evolution of molecular targeted cancer therapy: mechanisms of drug resistance and novel opportunities identified by CRISPR-Cas9 screening. Frontiers in Oncology. 2022;12:755053. DOI: https://doi.org/10.3389/fonc.2022.755053
3. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca-A Cancer Journal for Clinicians. 2021;71(3):209-249. DOI: https://doi.org/10.3322/caac.21660
4. Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: What we know so far. Nature Reviews Clinical Oncology. 2023;20:359-371. DOI: https://doi.org/10.1038/s41571-023-00754-1
5. Crees ZD, Ghobadi A. Cellular therapy updates in B-cell lymphoma: the state of the CAR-T. Cancers. 2021;13(20):5181. DOI: https://doi.org/10.3390/cancers13205181
6. ABECMA [Электронный ресурс]. Proven CAR T Cell Therapy Power in the Patients You’re Likely to See [дата обращения: 25.12.2023]. URL: https://www.abecmahcp.com/efficacy
7. CARVYCTI [Электронный ресурс]. EFFICACY OUTCOMES FROM THE PIVOTAL CARTITUDE-1 STUDY [дата обращения: 25.12.2023]. URL: https://www.carvyktihcp.com/efficacy
8. Garfall A, Cohen A, Susanibar-Adaniya S, et al. CAR T cells targeting BCMA and CD19 for newly diagnosed and relapsed multiple myeloma patients responding to current therapy [Электронный ресурс]. Blood Cancer Discovery. 2022 [дата обращения: 25.12.2023]. URL: https://oak.novartis.com/id/eprint/47478
9. Jain A, Jain A, Malhotra P. Re-defining prognosis of hematological malignancies by dynamic response assessment methods: lessons learnt in chronic myeloid leukemia, Hodgkin lymphoma, diffuse large b cell lymphoma and multiple myeloma. Indian Journal of Hematology and Blood Transfusion. 2020;36:447-457. DOI: https://doi.org/10.1007/s12288-019-01213-7
10. Aparicio-Pérez C, Carmona M, Benabdellah K, et al. Failure of ALL recognition by CAR T cells: a review of CD 19-negative relapses after anti-CD 19 CAR-T treatment in B-ALL. Frontiers in Immunology. 2023;14:1165870. DOI: https://doi.org/10.3389/fimmu.2023.1165870
11. Fischer J, Paret C, El Malki K, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. Journal of Immunotherapy. 2017;40(5):187-195. DOI: https://doi.org/10.1097/CJI.0000000000000169
12. Xie D, Jin X, Sun R, et al. Relapse mechanism and treatment strategy after chimeric antigen receptor T-cell therapy in treating B-cell hematological malignancies. Technology in Cancer Research and Treatment. 2022;21:15330338221118413. DOI: https://doi.org/10.1177/15330338221118413
13. Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discovery. 2015;5(12):1282-1295. DOI: https://doi.org/10.1158/2159-8290.CD-15-1020
14. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine. 2018;24(1):20-28. DOI: https://doi.org/10.1038/nm.4441
15. Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications. 2016;7(1):12320. DOI: https://doi.org/10.1038/ncomms12320
16. Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406-2410. DOI: https://doi.org/10.1182/blood-2015-08-665547
17. Evans A, Burack R, Rothberg PG, et al. Evolution to Plasmablastic Lymphoma (PBL) after CAR-T Cell Therapy in a Case of SLL/CLL with Richter’s Transformation. Blood. 2014;124(21):5660-5660. DOI: https://doi.org/10.1182/blood.V124.21.5660.5660
18. Ruella M, Xu J, Barrett DM, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine. 2018;24(10):1499-1503. DOI: https://doi.org/10.1038/s41591-018-0201-9
19. Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568(7750):112-116. DOI: https://doi.org/10.1038/s41586-019-1054-1
20. Cronk RJ, Zurko J, Shah NN. Bispecific chimeric antigen receptor T cell therapy for B cell malignancies and multiple myeloma. Cancers. 2020;12(9):2523. DOI: https://doi.org/10.3390/cancers12092523
21. Strati P, Leslie LA, Shiraz P, et al. Axicabtagene ciloleucel (axi-cel) in combination with rituximab (Rtx) for the treatment (Tx) of refractory large B-cell lymphoma (R-LBCL): Outcomes of the phase 2 ZUMA-14 study. Journal of Clinical Oncology. 2022;40(16_suppl):7567-7567. DOI: https://doi.org/10.1200/JCO.2022.40.16_suppl.7567
22. Wei J, Zhang Y, Zhao H, et al. CD19/CD22 Dual-Targeted CAR T-cell Therapy for Relapsed/Refractory Aggressive B-cell Lymphoma: A Safety and Efficacy Study. Cancer Immunol Res. 2021; 9 (9): 1061–1070. DOI: https://doi.org/10.1158/2326-6066.CIR-20-0675
23. Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nature Medicine. 2021;27(8):1419-1431. DOI: https://doi.org/10.1038/s41591-021-01436-0
24. Cao Y, Xiao Y, Wang N, et al. CD19/CD22 Chimeric Antigen Receptor T Cell Cocktail Therapy following Autologous Transplantation in Patients with Relapsed/Refractory Aggressive B Cell Lymphomas. Transplantation and Cellular Therapy. 2021;27(11):910.e1-910.e11. DOI: https://doi.org/10.1016/j.jtct.2021.08.012
25. Wang T, Tang Y, Cai J, et al. Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. Journal of Clinical Oncology. 2023;41(9):1670-1683. DOI: https://doi.org/10.1200/JCO.22.01214
26. Roddie C, Lekakis LJ, Marzolini MA, et al. Dual targeting of CD19 and CD22 with bicistronic CAR-T cells in patients with relapsed/refractory large B-cell lymphoma. Blood. 2023;141(20):2470-2482. DOI: https://doi.org/10.1182/blood.2022018598
27. Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic Antibodies: What Have We Learnt from Targeting CD20 and Where Are We Going? Frontiers in Immunology. 2017;8:1245. DOI: https://doi.org/10.3389/fimmu.2017.01245
28. Le Jeune C, Thomas X. Antibody-based therapies in B-cell lineage acute lymphoblastic leukaemia. European Journal of Haematology. 2015;94(2):99-108. DOI: https://doi.org/10.1111/ejh.12408
29. Larson SM, Walthers CM, Ji B, et al. CD19/CD20 bispecific chimeric antigen receptor (CAR) in naïve/memory T cells for the treatment of relapsed or refractory non-Hodgkin lymphoma. Cancer Discovery. 2023;13(3):580-597. DOI: https://doi.org/10.1158/2159-8290.CD-22-0964
30. Shah NN, Johnson BD, Schneider D, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nature Medicine. 2020;26(10):1569-1575. DOI: https://doi.org/10.1038/s41591-020-1081-3
31. Shah NN, Furqan F, Szabo A, et al. Results from a Phase 1/2 Study of Tandem, Bispecific Anti-CD20/Anti-CD19 (LV20. 19) CAR T-Cells for Mantle Cell Lymphoma. Blood. 2022;140(Supplement 1):9318-9319. DOI: https://doi.org/10.1182/blood-2022-158695
32. Zhang Y, Wang Y, Liu Y, et al. Long-term activity of tandem CD19/CD20 CAR therapy in refractory/relapsed B-cell lymphoma: a single-arm, phase 1–2 trial. Leukemia. 2022;36(1):189-196. DOI: https://doi.org/10.1038/s41375-021-01345-8
33. Liang A, Zhou L, Li P, et al. Safety and efficacy of a novel anti-CD20/CD19 bi-specific CAR T-cell therapy (C-CAR039) in relapsed or refractory (r/r) B-cell non-Hodgkin lymphoma (B-NHL). Journal of Clinical Oncology. 2021;39(15_suppl):2507-2507. DOI: https://doi.org/10.1200/JCO.2021.39.15_suppl.2507
34. Ghafouri SN, Walthers C, Roshandell M, et al. Abstract CT007: CD19/CD20 bispecific chimeric antigen receptor (CAR) in naive/memory T-cells for the treatment of relapsed or refractory B-cell lymphomas. Cancer Research. 2021;81(13_Supplement):CT007. DOI: https://doi.org/10.1158/1538-7445.AM2021-CT007
35. Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clinical Cancer Research. 2013;19(8):2048-2060. DOI: https://doi.org/10.1158/1078-0432.CCR-12-2422
36. Teoh PJ, Chng WJ. CAR T-cell therapy in multiple myeloma: more room for improvement. Blood Cancer Journal. 2021;11(4):84. DOI: https://doi.org/10.1038/s41408-021-00469-5
37. Sanchez E, Li M, Kitto A, et al. Serum B‐cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. British Journal of Haematology. 2012;158(6):727-738. DOI: https://doi.org/10.1111/j.1365-2141.2012.09241.x
38. Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. New England Journal of Medicine. 2015;373(11):1040-1047. DOI: https://doi.org/10.1056/NEJMoa1504542
39. Garfall AL, Maus MV, Lacey SF, et al. Safety and efficacy of anti-CD19 chimeric antigen receptor (CAR)-modified autologous T cells (CTL019) in advanced multiple myeloma. Journal of Clinical Oncology. 2015;33:8517-8517. DOI: https://doi.org/10.1200/jco.2015.33.15_suppl.8517
40. Shimabukuro-Vornhagen A, Schloesser HA, von Bergwelt-Baildon MS. Chimeric Antigen Receptor T Cells in Myeloma. New England Journal of Medicine. 2016;374(2):193-194. DOI: https://doi.org/10.1056/NEJMc1512760
41. Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight. 2018;3(8):e120505. DOI: https://doi.org/10.1172/jci.insight.120505
42. Garfall AL, Cohen AD, Susanibar-Adaniya SP, et al. Anti-BCMA/CD19 CAR T cells with early immunomodulatory maintenance for multiple myeloma responding to initial or later-line therapy. Blood Cancer Discovery. 2023;4(2):118-133. DOI: https://doi.org/10.1158/2643-3230.BCD-22-0074
43. Du J, Fu WJ, Jiang H, et al. Updated results of a phase I, open-label study of BCMA/CD19 dual-targeting fast CAR-T GC012F for patients with relapsed/refractory multiple myeloma (RRMM). Journal of Clinical Oncology. 2023;41(16_suppl):8005. DOI: https://doi.org/10.1200/JCO.2023.41.16_suppl.8005
44. Wang Y, Cao J, Gu W, et al. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma. Journal of Clinical Oncology. 2022;40(20):2246-2256. DOI: https://doi.org/10.1200/JCO.21.01676
45. Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. Journal of Hematology and Oncology. 2021;14(1):161. DOI: https://doi.org/10.1186/s13045-021-01170-7
46. Tang Y, Yin H, Zhao X, et al. High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma. Journal of Experimental and Clinical Cancer Research. 2022;41(1):2. DOI: https://doi.org/10.1186/s13046-021-02214-z
47. Zhang H, Liu M, Xiao X, et al. A combination of humanized anti-BCMA and murine anti-CD38 CAR-T cell therapy in patients with relapsed or refractory multiple myelomaю Leukemia and Lymphoma. 2022;63(6):1418-1427. DOI: https://doi.org/10.1080/10428194.2022.2030476
48. Li C, Wang X, Wu Z, et al. Bispecific CS1-BCMA CAR-T cells are clinically active in relapsed or refractory multiple myeloma: an updated clinical studyю Blood. 2022;140(Supplement 1):4573-4574. DOI: https://doi.org/10.1182/blood-2022-170686
49. Lee L, Lim WC, Galas-Filipowicz D, et al. Limited efficacy of APRIL CAR in patients with multiple myeloma indicate challenges in the use of natural ligands for CAR T-cell therapy. Journal for Immunotherapy of Cancer. 2023;11(6):e006699. DOI: https://doi.org/10.1136/jitc-2023-006699
50. Fousek K, Watanabe J, Joseph SK, et al. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia. 2021;35(1):75-89. DOI: https://doi.org/10.1038/s41375-020-0792-2
51. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine. 2018;378(5):439-448. DOI: https://doi/10.1056/NEJMoa1709866
52. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine. 2017;377(26):2531-2544. DOI: https://doi.org/10.1056/NEJMoa1707447
53. Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. New England Journal of Medicine. 2020;382(14):1331-1342. DOI: https://doi.org/10.1056/NEJMoa1914347
54. Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. The Lancet. 2020;396(10254):839-852. DOI: https://doi.org/10.1016/S0140-6736(20)31366-0
The work was carried out within the framework of the Strategic Academic Leadership Programme (PRIORITY-2030) of Kazan Federal University